On the comparison of a theoretical and an empirical distribution function
Keyword(s):
Let ξ1, ξ2, ···, ξm be mutually independent random variables having a common distribution function P{ξr≦x} = F(x)(r = 1, 2, ···, m). Let Fm(x) be the empirical distribution function of the sample (ξ1, ξ2, ···, ξm), that is, Fm(x) is defined as the number of variables ≦x divided by m.
1971 ◽
Vol 8
(02)
◽
pp. 321-330
◽
1967 ◽
Vol 19
◽
pp. 550-558
◽
2005 ◽
Vol 127
(1)
◽
pp. 1767-1783
◽
1990 ◽
Vol 34
(4)
◽
pp. 625-644
◽
2005 ◽
Vol 49
(4)
◽
pp. 724-734
◽
1995 ◽
Vol 118
(2)
◽
pp. 375-382
◽
2004 ◽
Vol 48
(3)
◽
pp. 561-568
◽