A simple proof of a random stable limit theorem

1970 ◽  
Vol 7 (2) ◽  
pp. 502-504 ◽  
Author(s):  
Stephen R. Kimbleton

Random stable limit theorems have been obtained by several authors, e.g., [3], [4]. The purpose of this note is to give a rather elementary proof of the basic version of this theorem. Our proof may be viewed as the natural extension to stable laws of the method used by Rényi [2] in obtaining a random central limit theorem. Indeed, the only “outside” theorems used are Kolmogorov's inequality (which Rényi also uses) and a general theorem on necessary and sufficient conditions for convergence of a triangular array. It will also be observed that in the present theorem, the consideration of random variables in the domain of attraction of a stable law of index α = 1, introduces no additional difficulties.

1970 ◽  
Vol 7 (02) ◽  
pp. 502-504
Author(s):  
Stephen R. Kimbleton

Random stable limit theorems have been obtained by several authors, e.g., [3], [4]. The purpose of this note is to give a rather elementary proof of the basic version of this theorem. Our proof may be viewed as the natural extension to stable laws of the method used by Rényi [2] in obtaining a random central limit theorem. Indeed, the only “outside” theorems used are Kolmogorov's inequality (which Rényi also uses) and a general theorem on necessary and sufficient conditions for convergence of a triangular array. It will also be observed that in the present theorem, the consideration of random variables in the domain of attraction of a stable law of index α = 1, introduces no additional difficulties.


2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Wensheng Wang ◽  
Anwei Zhu

Let X={Xi,i≥1} be a sequence of real valued random variables, S0=0 and Sk=∑i=1kXi  (k≥1). Let σ={σ(x),x∈Z} be a sequence of real valued random variables which are independent of X’s. Denote by Kn=∑k=0nσ(⌊Sk⌋)  (n≥0) Kesten-Spitzer random walk in random scenery, where ⌊a⌋ means the unique integer satisfying ⌊a⌋≤a<⌊a⌋+1. It is assumed that σ’s belong to the domain of attraction of a stable law with index 0<β<2. In this paper, by employing conditional argument, we investigate large deviation inequalities, some sufficient conditions for Chover-type laws of the iterated logarithm and the cluster set for random walk in random scenery Kn. The obtained results supplement to some corresponding results in the literature.


Pythagoras ◽  
2010 ◽  
Vol 0 (71) ◽  
Author(s):  
Shunmugam Pillay ◽  
Poobhalan Pillay

The centre of mass G of a triangle has the property that the rays to the vertices from G sweep out triangles having equal areas. We show that such points, termed equipartitioning points in this paper, need not exist in other polygons. A necessary and sufficient condition for a quadrilateral to have an equipartitioning point is that one of its diagonals bisects the other. The general theorem, namely, necessary and sufficient conditions for equipartitioning points for arbitrary polygons to exist, is also stated and proved. When this happens, they are in general, distinct from the centre of mass. In parallelograms, and only in them, do the two points coincide.


1969 ◽  
Vol 6 (2) ◽  
pp. 419-429 ◽  
Author(s):  
C.C. Heyde

Let Xi, i = 1, 2, 3, … be a sequence of independent and identically distributed random variables which belong to the domain of attraction of a stable law of index a. Write S0= 0, Sn = Σ i=1nXi, n ≧ 1, and Mn = max0 ≦ k ≦ nSk. In the case where the Xi are such that Σ1∞n−1Pr(Sn > 0) < ∞, we have limn→∞Mn = M which is finite with probability one, while in the case where Σ1∞n−1Pr(Sn < 0) < ∞, a limit theorem for Mn has been obtained by Heyde [9]. The techniques used in [9], however, break down in the case Σ1∞n−1Pr(Sn < 0) < ∞, Σ1∞n−1Pr(Sn > 0) < ∞ (the case of oscillation of the random walk generated by the Sn) and the only results available deal with the case α = 2 (Erdos and Kac [5]) and the case where the Xi themselves have a symmetric stable distribution (Darling [4]). In this paper we obtain a general limit theorem for Mn in the case of oscillation.


1973 ◽  
Vol 16 (2) ◽  
pp. 173-177 ◽  
Author(s):  
D. R. Beuerman

Let Xl,X2,X3, … be a sequence of independent and identically distributed (i.i.d.) random variables which belong to the domain of attraction of a stable law of index α≠1. That is,1whereandwhere L(n) is a function of slow variation; also take S0=0, B0=l.In §2, we are concerned with the weak convergence of the partial sum process to a stable process and the question of centering for stable laws and drift for stable processes.


1971 ◽  
Vol 14 (3) ◽  
pp. 451-452
Author(s):  
M. V. Menon ◽  
V. Seshadri

Let X1, X2, …, be a sequence of independent and identically distributed random variables, with the common distribution function F(x). The sequence is said to be normally attracted to a stable law V with characteristic exponent α, if for some an (converges in distribution to V). Necessary and sufficient conditions for normal attraction are known (cf [1, p. 181]).


Sign in / Sign up

Export Citation Format

Share Document