On the convergence of the supercritical branching processes with immigration

1977 ◽  
Vol 14 (2) ◽  
pp. 387-390 ◽  
Author(s):  
Harry Cohn

It is shown for a supercritical branching process with immigration that if the log moment of the immigration distribution is infinite, then no sequence of positive constants {cn} exists such that {Xn/cn} converges in law to a proper limit distribution function F, except for the case F(0 +) = 1. Seneta's result [1] combined with the above-mentioned one imply that if 1 < m < ∞ then the finiteness of the log moment of the immigration distribution is a necessary and sufficient condition for the existence of some constants {cn} such that {Xn/cn} converges in law to a proper limit distribution function F, with F(0 +) < 1.

1977 ◽  
Vol 14 (02) ◽  
pp. 387-390 ◽  
Author(s):  
Harry Cohn

It is shown for a supercritical branching process with immigration that if the log moment of the immigration distribution is infinite, then no sequence of positive constants {cn } exists such that {Xn/cn } converges in law to a proper limit distribution function F, except for the case F(0 +) = 1. Seneta's result [1] combined with the above-mentioned one imply that if 1 &lt; m &lt; ∞ then the finiteness of the log moment of the immigration distribution is a necessary and sufficient condition for the existence of some constants {cn } such that {Xn /c n} converges in law to a proper limit distribution function F, with F(0 +) &lt; 1.


1977 ◽  
Vol 14 (4) ◽  
pp. 702-716 ◽  
Author(s):  
D. R. Grey

If {Zn} is a Galton–Watson branching process with infinite mean, it is shown that under certain conditions there exist constants {cn} and a function L, slowly varying at 0, such that converges almost surely to a non-degenerate random variable, whose distribution function satisfies a certain functional equation. The method is then extended to a continuous-time Markov branching process {Zt} with infinite mean, where it is shown that there is always a function φ, slowly varying at 0, such that converges almost surely to a non-degenerate random variable, and a necessary and sufficient condition is given for this convergence to be equivalent to convergence of for some constant α > 0.


1977 ◽  
Vol 14 (04) ◽  
pp. 702-716 ◽  
Author(s):  
D. R. Grey

If {Zn } is a Galton–Watson branching process with infinite mean, it is shown that under certain conditions there exist constants {cn } and a function L, slowly varying at 0, such that converges almost surely to a non-degenerate random variable, whose distribution function satisfies a certain functional equation. The method is then extended to a continuous-time Markov branching process {Zt } with infinite mean, where it is shown that there is always a function φ, slowly varying at 0, such that converges almost surely to a non-degenerate random variable, and a necessary and sufficient condition is given for this convergence to be equivalent to convergence of for some constant α &gt; 0.


1975 ◽  
Vol 12 (01) ◽  
pp. 130-134 ◽  
Author(s):  
Norman Kaplan

Let {Z(t)}t0be an age-dependent branching process with immigration. For a general class of functions Φ(x), a necessary and sufficient condition is given for whenE{Φ (Z(t))} &lt;∞. This result is a direct generalization of a theorem proven for the branching process without immigration.


1994 ◽  
Vol 31 (04) ◽  
pp. 897-910
Author(s):  
P. K. Pollett

In [14] a necessary and sufficient condition was obtained for there to exist uniquely a Q-process with a specified invariant measure, under the assumption that Q is a stable, conservative, single-exit matrix. The purpose of this note is to demonstrate that, for an arbitrary stable and conservative q-matrix, the same condition suffices for the existence of a suitable Q-process, but that this process might not be unique. A range of examples is considered, including pure-birth processes, a birth process with catastrophes, birth-death processes and the Markov branching process with immigration.


1975 ◽  
Vol 12 (1) ◽  
pp. 130-134 ◽  
Author(s):  
Norman Kaplan

Let {Z(t)}t0 be an age-dependent branching process with immigration. For a general class of functions Φ(x), a necessary and sufficient condition is given for when E{Φ (Z(t))} <∞. This result is a direct generalization of a theorem proven for the branching process without immigration.


1994 ◽  
Vol 31 (4) ◽  
pp. 897-910 ◽  
Author(s):  
P. K. Pollett

In [14] a necessary and sufficient condition was obtained for there to exist uniquely a Q-process with a specified invariant measure, under the assumption that Q is a stable, conservative, single-exit matrix. The purpose of this note is to demonstrate that, for an arbitrary stable and conservative q-matrix, the same condition suffices for the existence of a suitable Q-process, but that this process might not be unique. A range of examples is considered, including pure-birth processes, a birth process with catastrophes, birth-death processes and the Markov branching process with immigration.


1976 ◽  
Vol 13 (4) ◽  
pp. 798-803 ◽  
Author(s):  
R. A. Doney

For a subcritical Bellman-Harris process for which the Malthusian parameter α exists and the mean function M(t)∼ aeat as t → ∞, a necessary and sufficient condition for e–at (1 –F(s, t)) to have a non-zero limit is known. The corresponding condition is given for the generalized branching process.


Author(s):  
E. J. G. Pitman

AbstractA distribution function (F on [0,∞) belongs to the subexponential class if and only if 1−F(2) (x) ~ 2(1−F(x)), as x→ ∞. For an important class of distribution functions, a simple, necessary and sufficient condition for membership of is given. A comparison theorem for membership of and also some closure properties of are obtained.1980 Mathematics subject classification (Amer. Math. Soe.): primary 60 E 05; secondary 60 J 80.


Sign in / Sign up

Export Citation Format

Share Document