subexponential class
Recently Published Documents


TOTAL DOCUMENTS

8
(FIVE YEARS 0)

H-INDEX

4
(FIVE YEARS 0)

2014 ◽  
Vol 17 (A) ◽  
pp. 385-403 ◽  
Author(s):  
Jean-François Biasse ◽  
Claus Fieker

AbstractWe describe how to compute the ideal class group and the unit group of an order in a number field in subexponential time. Our method relies on the generalized Riemann hypothesis and other usual heuristics concerning the smoothness of ideals. It applies to arbitrary classes of number fields, including those for which the degree goes to infinity.



2005 ◽  
Vol 20 (1) ◽  
pp. 103-113 ◽  
Author(s):  
Qihe Tang

Consider a discrete-time insurance risk model with risky investments. Under the assumption that the loss distribution belongs to a certain subclass of the subexponential class, Tang and Tsitsiashvili (Stochastic Processes and Their Applications 108(2): 299–325 (2003)) established a precise estimate for the finite time ruin probability. This article extends the result both to the whole subexponential class and to a nonstandard case with associated discount factors.



1989 ◽  
Vol 26 (4) ◽  
pp. 892-897 ◽  
Author(s):  
Emily S. Murphree

A distribution function F on (0,∞) belongs to the subexponential class if the ratio of 1 – F(2)(x) to 1 – F(x) converges to 2 as x →∞. A necessary condition for membership in is used to prove that a certain class of functions previously thought to be contained in has members outside of . Sufficient conditions on the tail of F are found which ensure F belongs to ; these conditions generalize previously published conditions.



1989 ◽  
Vol 26 (04) ◽  
pp. 892-897
Author(s):  
Emily S. Murphree

A distribution function F on (0,∞) belongs to the subexponential class if the ratio of 1 – F (2)(x) to 1 – F(x) converges to 2 as x →∞. A necessary condition for membership in is used to prove that a certain class of functions previously thought to be contained in has members outside of . Sufficient conditions on the tail of F are found which ensure F belongs to ; these conditions generalize previously published conditions.



1987 ◽  
Vol 24 (1) ◽  
pp. 88-96
Author(s):  
Emily S. Murphree

A transient renewal process based on a sequence of possibly infinite waiting times is defined. The process is studied when the (rescaled) distribution of the waiting times belongs to the subexponential class of distributions. In this case, even conditional on all waiting times observed by time t being finite, the distributions of the forward and backward delays at t are asymptotically degenerate. Also, the conditional moments of the number of events by time t converge to the same finite limits as the unconditional moments.



1987 ◽  
Vol 24 (01) ◽  
pp. 88-96
Author(s):  
Emily S. Murphree

A transient renewal process based on a sequence of possibly infinite waiting times is defined. The process is studied when the (rescaled) distribution of the waiting times belongs to the subexponential class of distributions. In this case, even conditional on all waiting times observed by time t being finite, the distributions of the forward and backward delays at t are asymptotically degenerate. Also, the conditional moments of the number of events by time t converge to the same finite limits as the unconditional moments.



Author(s):  
E. J. G. Pitman

AbstractA distribution function (F on [0,∞) belongs to the subexponential class if and only if 1−F(2) (x) ~ 2(1−F(x)), as x→ ∞. For an important class of distribution functions, a simple, necessary and sufficient condition for membership of is given. A comparison theorem for membership of and also some closure properties of are obtained.1980 Mathematics subject classification (Amer. Math. Soe.): primary 60 E 05; secondary 60 J 80.





Sign in / Sign up

Export Citation Format

Share Document