Exact convergence rate of an Erdös-Rényi strong law for moving quantiles

1986 ◽  
Vol 23 (2) ◽  
pp. 355-369 ◽  
Author(s):  
Paul Deheuvels ◽  
Josef Steinebach

Consider a sequence U1, U2, · ·· of i.i.d. uniform (0, 1)-random variables. For fixed α ∈ (0, 1), let U(n, K) denote the [Kα]th order statistic of the subsample Un+1, · ··, Un+K, and set . Book and Truax (1976) proved the following analogue of the Erdös-Rényi (1970) strong law of large numbers: for α < u < 1 and C = C(α, u) such that −1/C = αlog(u/α)+ (1 – α)log((l – u)/(1 –α)), it holds almost surely that In view of the Deheuvels–Devroye (1983) improvements of the original Erdös-Rényi law, we determine the lim inf and lim sup of where K = [C log N]. This improves (∗), showing that it holds with a best-possible convergence rate of order O(log log N/log N). Using the quantile transformation the result can be extended to a general i.i.d. sequence X1, X2, · ·· with d.f. F satisfying a strict monotonicity condition.

1986 ◽  
Vol 23 (02) ◽  
pp. 355-369
Author(s):  
Paul Deheuvels ◽  
Josef Steinebach

Consider a sequence U 1, U 2 , · ·· of i.i.d. uniform (0, 1)-random variables. For fixed α ∈ (0, 1), let U(n, K) denote the [Kα]th order statistic of the subsample Un +1, · ··, Un +K , and set . Book and Truax (1976) proved the following analogue of the Erdös-Rényi (1970) strong law of large numbers: for α &lt; u &lt; 1 and C = C(α, u) such that −1/C = αlog(u/α)+ (1 – α)log((l – u)/(1 –α)), it holds almost surely that In view of the Deheuvels–Devroye (1983) improvements of the original Erdös-Rényi law, we determine the lim inf and lim sup of where K = [C log N]. This improves (∗), showing that it holds with a best-possible convergence rate of order O(log log N/log N). Using the quantile transformation the result can be extended to a general i.i.d. sequence X 1, X 2, · ·· with d.f. F satisfying a strict monotonicity condition.


Filomat ◽  
2019 ◽  
Vol 33 (10) ◽  
pp. 2951-2961
Author(s):  
Xufei Tang ◽  
Xuejun Wang ◽  
Yi Wu

In this paper, we give some exponential inequalities for extended independent random variables under sub-linear expectations. As an application, we obtain the strong convergence rate O(n-1/2 ln1/2 n) for the strong law of large numbers under sub-linear expectations, which generalizes some corresponding ones under the classical linear expectations.


1983 ◽  
Vol 35 (6) ◽  
pp. 1129-1146 ◽  
Author(s):  
G. L. O'Brien

Let {Yn, n ∊ Z} be an ergodic strictly stationary sequence of random variables with mean zero, where Z denotes the set of integers. For n ∊ N = {1, 2, …}, let Sn = Y1 + Y2 + … + Yn. The ergodic theorem, alias the strong law of large numbers, says that n–lSn → 0 as n → ∞ a.s. If the Yn's are independent and have variance one, the law of the iterated logarithm tells us that this convergence takes place at the rate in the sense that1It is our purpose here to investigate what other rates of convergence are possible for the ergodic theorem, that is to say, what sequences {bn, n ≧ 1} have the property that2for some ergodic stationary sequence {Yn, n ∊ Z}.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Xiaochen Ma ◽  
Qunying Wu

In this article, we research some conditions for strong law of large numbers (SLLNs) for weighted sums of extended negatively dependent (END) random variables under sublinear expectation space. Our consequences contain the Kolmogorov strong law of large numbers and the Marcinkiewicz strong law of large numbers for weighted sums of extended negatively dependent random variables. Furthermore, our results extend strong law of large numbers for some sequences of random variables from the traditional probability space to the sublinear expectation space context.


1994 ◽  
Vol 44 (1-2) ◽  
pp. 115-122 ◽  
Author(s):  
Arup Bose ◽  
Tapas K. Chandra

Let { X n} be a sequence of pairwise independent (or -mixing) mean zero random variables such that [Formula: see text] is integrable on (0,∞) and [Formula: see text] then we show that [Formula: see text] almost surely as n→∞, These are very convenient and immediate generalizations of the classical SLLN for the iid case.


Author(s):  
Li Guan ◽  
Jinping Zhang ◽  
Jieming Zhou

This work proposes the concept of uncorrelation for fuzzy random variables, which is weaker than independence. For the sequence of uncorrelated fuzzy variables, weak and strong law of large numbers are studied under the uniform Hausdorff metric d H ∞ . The results generalize the law of large numbers for independent fuzzy random variables.


Sign in / Sign up

Export Citation Format

Share Document