Uncertainty Quantification Using Generalized Polynomial Chaos for Online Simulations of Automotive Propulsion Systems*

Author(s):  
Hang Yang ◽  
Narayanan Kidambi ◽  
Yuji Fujii ◽  
Alex Gorodetsky ◽  
Kon-Well Wang
2021 ◽  
Author(s):  
Hang Yang ◽  
Alex Gorodetsky ◽  
Yuji Fujii ◽  
Kon-Well Wang

Abstract The increasing complexity and demanding performance requirement of modern automotive propulsion systems necessitate more intelligent and robust predictive controls. Due to the significant uncertainties from both unavoidable modeling errors and probabilistic environmental disturbances, the ability to quantify the effect of these uncertainties to the system behaviors is of crucial importance to enable advanced control designs for automotive propulsion systems. Furthermore, the quantification of uncertainty must be computationally efficient such that it can be conducted on board a vehicle in real-time. However, traditional uncertainty quantification methods for complicated nonlinear systems, such as Monte Carlo, often rely on sampling — a computationally prohibitive process for many applications. Previous research has shown promises of using spectral decomposition methods such as generalized Polynomial Chaos to reduce the online computational cost of uncertainty quantification. However, such method suffers from scalability and bias issues. This paper seeks to alleviate these computational bottlenecks by developing a multifidelity uncertainty quantification method that combines low-order generalized Polynomial Chaos with Monte Carlo estimation via Control Variates. Results on the mean and variance estimates of the axle shaft torque show that the proposed method can correct the bias of low-order Polynomial Chaos expansions while significantly reducing variance compared to the conventional Monte Carlo.


2019 ◽  
Vol 142 (1) ◽  
Author(s):  
S. G. H. Heinen ◽  
K. Gashi ◽  
D. A. F van den Heuvel ◽  
J. P. P. M. de Vries ◽  
F. N. van de Vosse ◽  
...  

Abstract Two-dimensional (2D) or three-dimensional (3D) models of blood flow in stenosed arteries can be used to patient-specifically predict outcome metrics, thereby supporting the physicians in decision making processes. However, these models are time consuming which limits the feasibility of output uncertainty quantification (UQ). Accurate surrogates (metamodels) might be the solution. In this study, we aim to demonstrate the feasibility of a generalized polynomial chaos expansion-based metamodel to predict a clinically relevant output metric and to quantify the output uncertainty. As an example, a metamodel was constructed from a recently developed 2D model that was shown to be able to estimate translesional pressure drops in iliac artery stenoses (−0.9 ± 12.7 mmHg, R2 = 0.81). The metamodel was constructed from a virtual database using the adaptive generalized polynomial chaos expansion (agPCE) method. The constructed metamodel was then applied to 25 stenosed iliac arteries to predict the patient-specific pressure drop and to perform UQ. Comparing predicted pressure drops of the metamodel and in vivo measured pressure drops, the mean bias (−0.2 ± 13.7 mmHg) and the coefficient of determination (R2 = 0.80) were as good as of the original 2D computational fluid dynamics (CFD) model. UQ results of the 2D and metamodel were comparable. Estimation of the uncertainty interval using the original 2D model took 14 days, whereas the result of the metamodel was instantly available. In conclusion, it is feasible to quantify the uncertainty of the output metric and perform sensitivity analysis (SA) instantly using a metamodel. Future studies should investigate the possibility to construct a metamodel of more complex problems.


Sign in / Sign up

Export Citation Format

Share Document