neutron transport
Recently Published Documents


TOTAL DOCUMENTS

1717
(FIVE YEARS 285)

H-INDEX

42
(FIVE YEARS 5)

2022 ◽  
Vol 166 ◽  
pp. 108712
Author(s):  
Vincent Labouré ◽  
Yaqi Wang ◽  
Javier Ortensi ◽  
Nicolas Martin ◽  
Sebastian Schunert

Kerntechnik ◽  
2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Ali Zafer Bozkır ◽  
Recep Gökhan Türeci ◽  
Dinesh Chandra Sahni

Abstract One speed, time-independent and homogeneous medium neutron transport equation is solved for second order scattering using the Anlı-Güngör scattering function which is a recently investigated scattering function. The scattering function depends on Legendre polynomials and the t parameter which is defined on the interval [−1,  1]. A half-space albedo problem is examined with the FN method and the recently developed SVD method. Albedo values are calculated with two methods and tabulated. Thus, the albedo values for the Anlı-Güngör scattering are compared with these methods. The behaviour of the scattering function is similar to İnönü’s scattering function according to calculated results.


2021 ◽  
Vol 9 ◽  
Author(s):  
Donghao He ◽  
Tengfei Zhang ◽  
Xiaojing Liu

The combined fission matrix theory is a recently-developed hybrid neutron transport method. It features high efficiency, fidelity, and resolution whole-core transport calculation. The theory is based on the assumption that the fission matrix element ai,j is dominated by the property of the destination cell i. This assumption can be well explained in thermal reactors, and the combined fission matrix method has been validated in a series of thermal neutron system benchmarks. This work examines the feasibility of the combined fission matrix theory in fast reactors. The European Sodium Fast Reactor is used as the numerical benchmark. Compared to the Monte Carlo method, the combined fission matrix theory reports a 64 pcm keff difference and 8.3% 2D RMS error. The error is much larger than that in thermal reactors, and the correction ratio cannot significantly reduce the material discontinuity error in fast reactors. Overall, the combined fission matrix theory is more suited for thermal reactor transport calculations. Its application in fast reactors needs further developments.


2021 ◽  
Vol 9 ◽  
Author(s):  
Francesc Salvat ◽  
José Manuel Quesada

After a summary description of the theory of elastic collisions of nucleons with atoms, we present the calculation of a generic database of differential and integrated cross sections for the simulation of multiple elastic collisions of protons and neutrons with kinetic energies larger than 100 keV. The relativistic plane-wave Born approximation, with binding and Coulomb-deflection corrections, has been used to calculate a database of proton-impact ionization of K-shell and L-, M-, and N-subshells of neutral atoms These databases cover the whole energy range of interest for all the elements in the periodic system, from hydrogen to einsteinium (Z = 1–99); they are provided as part of the penh distribution package. The Monte Carlo code system penh for the simulation of coupled electron-photon-proton transport is extended to account for the effect of the transport of neutrons (released in proton-induced nuclear reactions) in calculations of dose distributions from proton beams. A simplified description of neutron transport, in which neutron-induced nuclear reactions are described as a fractionally absorbing process, is shown to give simulated depth-dose distributions in good agreement with those generated by the Geant4 code. The proton-impact ionization database, combined with the description of atomic relaxation data and electron transport in penelope, allows the simulation of proton-induced x-ray emission spectra from targets with complex geometries.


Nukleonika ◽  
2021 ◽  
Vol 66 (4) ◽  
pp. 133-138
Author(s):  
Mikołaj Oettingen ◽  
Jerzy Cetnar

Abstract The volumetric homogenization method for the simplified modelling of modular high-temperature gas-cooled reactor core with thorium-uranium fuel is presented in the paper. The method significantly reduces the complexity of the 3D numerical model. Hence, the computation time associated with the time-consuming Monte Carlo modelling of neutron transport is considerably reduced. Example results comprise the time evolutions of the effective neutron multiplication factor and fissionable isotopes (233U, 235U, 239Pu, 241Pu) for a few configurations of the initial reactor core.


Sign in / Sign up

Export Citation Format

Share Document