scholarly journals A fault-tolerant control method for distributed flight control system facing wing damage

2021 ◽  
Vol 32 (5) ◽  
pp. 1041-1052
Author(s):  
Cui Yuwei ◽  
Li Aijun ◽  
Meng Xianfeng
2019 ◽  
Vol 9 (2) ◽  
pp. 276 ◽  
Author(s):  
Yugong Luo ◽  
Yun Hu ◽  
Fachao Jiang ◽  
Rui Chen ◽  
Yongsheng Wang

To solve the problems with the existing active fault-tolerant control system, which does not consider the cooperative control of the drive system and steering system or accurately relies on the vehicle model when one or more motors fail, a multi-input and multi-output model-free adaptive active fault-tolerant control method for four-wheel independently driven electric vehicles is proposed. The method, which only uses the input/output data of the vehicle in the control system design, is based on a new dynamic linearization technique with a pseudo-partial derivative, aimed at solving the complex and nonlinear issues of the vehicle model. The desired control objectives can be achieved by the coordinated adaptive fault-tolerant control of the drive and steering systems under different failure conditions of the drive system. The error convergence and input-output boundedness of the control system are proven by means of stability analysis. Finally, simulations and further experiments are carried out to validate the effectiveness and real-time response of the fault-tolerant system in different driving scenarios. The results demonstrate that our proposed approach can maintain the longitudinal speed error (within 3%) and lateral stability, thereby improving the safety of the vehicles.


2013 ◽  
Vol 2013 ◽  
pp. 1-8
Author(s):  
Songyin Cao ◽  
Jianzhong Qiao

A robust fault tolerant control (FTC) approach is addressed for a class of nonlinear systems with time delay, actuator faults, and multiple disturbances. The first part of the multiple disturbances is supposed to be an uncertain modeled disturbance and the second one represents a norm-bounded variable. First, a composite observer is designed to estimate the uncertain modeled disturbance and actuator fault simultaneously. Then, an FTC strategy consisting of disturbance observer based control (DOBC), fault accommodation, and a mixedH2/H∞controller is constructed to reconfigure the considered systems with disturbance rejection and attenuation performance. Finally, simulations for a flight control system are given to show the efficiency of the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document