flight control system
Recently Published Documents


TOTAL DOCUMENTS

1382
(FIVE YEARS 171)

H-INDEX

28
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Yufei Zhu ◽  
Rikin Gupta ◽  
Azwan Aris ◽  
Taewoo Nam

Author(s):  
Carlos Cabaleiro de la Hoz ◽  
Marco Fioriti

Flight control surfaces guarantee a safe and precise control of the aircraft. As a result, hinge moments are generated. These moments need to be estimated in order to properly size the aircraft actuators. Control surfaces include the ailerons, rudder, elevator, flaps, slats, and spoilers, and they are moved by electric or hydraulic actuators. Actuator sizing is the key when comparing different flight control system architectures. This fact becomes even more important when developing more-electric aircraft. Hinge moments need to be estimated so that the actuators can be properly sized and their effects on the overall aircraft design are measured. Hinge moments are difficult to estimate on the early stages of the design process due to the large number of required input. Detailed information about the airfoil, wing surfaces, control surfaces, and actuators is needed but yet not known on early design phases. The objective of this paper is to propose a new methodology for flight control system sizing, including mass and power estimation. A surrogate model for the hinge moment estimation is also proposed and used. The main advantage of this new methodology is that all the components and actuators can be properly sized instead of just having overall system results. The whole system can now be sized more in detail during the preliminary design process, which allows to have a more reliable estimation and to perform systems installation analysis. Results show a reliable system mass estimation similar to the results obtained with other known methods and also providing the weight for each component individually.


Author(s):  
Nur Ezzyana Ameera Mazlan ◽  
◽  
Syariful Syafiq Shamsudin ◽  
Mohammad Fahmi Pairan ◽  
Mohd Fauzi Yaakub ◽  
...  

This research focuses on developing an automatic flight control system for a fixed-wing unmanned aerial vehicle (UAV) using a software-in-the-loop method in which the PID controller is implemented in National Instruments LabVIEW software and the flight dynamics of the fixed-wing UAV are simulated using the X-Plane flight simulator. The fixed-wing UAV model is created using the Plane Maker software and is based on existing geometry and propulsion data from the literature. Gain tuning for the PID controller is accomplished using the pole placement technique. In this approach, the controller gain can be calculated using the dynamic parameters in the transfer function model and the desired characteristic equation. The proposed controller designs' performance is validated using attitude, altitude, and velocity hold simulations. The results demonstrate that the technique can be an effective tool for researchers to validate their UAV control algorithms by utilising the realistic UAV or manned aircraft models available in the X-Plane flight simulator.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Lin Meng ◽  
Shuo Wang ◽  
Ye Chen ◽  
Yang Gao

FanWing has been taken to the visual field because of its performance combination of fixed-wing aircraft and helicopter. Its flight mode is currently limited mainly by a remote control, while the research of automated flight control is on the rise. The fan wing could offer lift, thrust, and the additional pitch moment for longitudinal control. At the same time, the roll moment and the yaw moment can be generated by the differential rotation of the cross-flow fan to realize the lateral control. It provides the possibility for its emergency flight control when the aerodynamic control becomes inefficient at a low speed. The difficulties in designing the emergency control system in both the longitudinal and lateral controls are analyzed. And it emphasizes the importance of selecting its center of gravity and the emergency control method of longitudinal control in engineering. The simulation results show that as an emergency flight control system, fan wing control is feasible. The study of the fan wing control will provide a reference solution for its further engineering applications.


2021 ◽  
pp. 190-197
Author(s):  
Xu Mu ◽  
Jingping Shi ◽  
Xiang Gao

2021 ◽  
pp. 2239-2251
Author(s):  
Feihong Jiang ◽  
Zhenbao Liu ◽  
Wang Bo ◽  
Xue Yuan ◽  
Chunming Tong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document