A method of maximum power point tracking for a variable speed wind turbine system

Author(s):  
Janusz Baran ◽  
Andrzej Jaderko
2011 ◽  
Vol 65 ◽  
pp. 389-393 ◽  
Author(s):  
Feng Ting Li ◽  
En Rang Zheng

This paper analyzes the operating characteristics of wind turbine and introduces the principle of maximum power point tracking control system of variable speed wind turbine. A improved maximum power tracking control strategy is proposed for large inertia wind power systems in order to achieve maximum wind power capture and increased utilization of wind energy when wind turbines is below the rated wind speed. A variable speed wind power generation system is modeled and simulated in the Simulink environment of the Matlab .The simulation results proves the correctness and feasibility of the tracking control strategy suggested in this paper.


2021 ◽  
Vol 17 (2) ◽  
pp. 92-101
Author(s):  
Adrián Pozo ◽  
Edy Ayala ◽  
Silvio Simani ◽  
Eduardo Muñoz

In this In this article, a control strategy for Maximum Power Point Tracking (MPPT) of a wind turbine system based on a Doubly Fed Induction Generator (DFIG) is presented. The proposed strategy consists of the Indirect Speed Control (ISC) taking the Low Speed Shaft (LSS) as variable input. This implementation allows the MPPT to optimize the Power coefficient (Cp). The controller has been designed in order to allow the wind turbine to reach the MPPT along the partial load operation. For these experiments, a 1.5 MW wind turbine was modeled and simulated by using Matlab and Fatigue, Aerodynamic, Structure and Turbulence (FAST) software. In order to present the achieved results, a comparison between the ISC and a classical PI controller is made. The Cp curves as well as the output power display an important improvement in terms of stability. These results are possible because the appropriate values of optimal Tip Speed Ratio (TSR) and maximum Cp have been properly established.  article, a control strategy for Maximum Power Point Tracking (MPPT) of a wind turbine system based on a Doubly Fed Induction Generator (DFIG) is presented. The proposed strategy consists of the Indirect Speed Control (ISC) taking the Low Speed Shaft (LSS) as variable input. This implementation allows the MPPT to optimize the Power coefficient (Cp). The controller has been designed in order to allow the wind turbine to reach the MPPT along the partial load operation. For these experiments, a 1.5 MW wind turbine was modeled and simulated by using Matlab and Fatigue, Aerodynamic, Structure and Turbulence (FAST) software. In order to present the achieved results, a comparison between the ISC and a classical PI controller is made. The Cp curves as well as the output power display an important improvement in terms of stability. These results are possible because the appropriate values of optimal Tip Speed Ratio (TSR) and maximum Cp have been properly established. 


Sign in / Sign up

Export Citation Format

Share Document