The NDIC Algorithm of HPA Nonlinearity on MU-Massive MIMO System Performance

Author(s):  
Maha Cherif ◽  
Ridha Bouallegue
2020 ◽  
Vol 26 (10) ◽  
pp. 135-148 ◽  
Author(s):  
Daroon Shaho Omer ◽  
Mohammed Abdullah Hussein ◽  
Luqman Mahmood Mina

In this research the performance of 5G mobile system is evaluated through the Ergodic capacity metric. Today, in an­­y wireless communication system, many parameters have a significant role on system performance. Three main parameters are of concern here; the source power, number of antennas, and transmitter-receiver distance. User equipment’s (UEs) with equal and non-equal powers are used to evaluate the system performance in addition to using different antenna techniques to demonstrate the differences between SISO, MIMO, and massive MIMO. Using two mobile stations (MS) with different distances from the base station (BS), resulted in showing how using massive MIMO system will improve the performance than the standard SISO and MIMO techniques, under Rayleigh fading channel. Using MATLAB as a simulation tool it was found that the ergodic channel capacity enhance by increasing the power of the source and the base station antenna and it behaves in an opposite way with distance.


2018 ◽  
Vol 7 (3.34) ◽  
pp. 234
Author(s):  
Anjana Devi.J ◽  
Dr R. Dhaya ◽  
Dr R. Kanthavel

The primary intention of the paper is to explore on various Multi-Layer MIMO approaches for the higher system performance. MIMO technique is said to be the key technology in LTE-A to achieve the spatial diversity in the system. Multi-Layer MIMO is the enhancement to the MIMO technology where multiple streams of data could be transferred to different layers for optimization with increased capacity in the network in high SNR condition. In a massive MIMO system, the cell interference hinders the system performance due to high channel dimensionality. The main design objective of the Multi-Layer MIMO techniques studied is to reduce the Cell Interference with lower complexity.  


2020 ◽  
Vol 14 ◽  
Author(s):  
Keerti Tiwari

: Multiple-input multiple-output (MIMO) systems have been endorsed to enable future wireless communication requirements. The efficient system designing appeals an appropriate channel model, that considers all the dominating effects of wireless environment. Therefore, some complex or less analytically acquiescent composite channel models have been proposed typically for single-input single-output (SISO) systems. These models are explicitly employed for mobile applications, though, we need a specific study of a model for MIMO system which can deal with radar clutters and different indoor/outdoor and mobile communication environments. Subsequently, the performance enhancement of MIMO system is also required in such scenario. The system performance enhancement can be examined by low error rate and high capacity using spatial diversity and spatial multiplexing respectively. Furthermore, for a more feasible and practical system modeling, we require a generalized noise model along with a composite channel model. Thus, all the patents related to MIMO channel models are revised to achieve the near optimal system performance in real world scenario. This review paper offers the methods to improve MIMO system performance in less and severe fading as well as shadowing environment and focused on a composite Weibull-gamma fading model. The development is the collective effects of selecting the appropriate channel models, spatial multiplexing/detection and spatial diversity techniques both at the transmitter and the receivers in the presence of arbitrary noise.


Sign in / Sign up

Export Citation Format

Share Document