channel model
Recently Published Documents


TOTAL DOCUMENTS

2766
(FIVE YEARS 680)

H-INDEX

68
(FIVE YEARS 9)

Author(s):  
Letícia Carneiro de Souza ◽  
Celso Henrique de Souza Lopes ◽  
Rita de Cassia Carlleti dos Santos ◽  
Arismar Cerqueira Sodré Junior ◽  
Luciano Leonel Mendes

The millimeter-waves band will enable multi-gigabit data transmission due to the large available bandwidth and it is a promising solution for the spectrum scarcity below 6 GHz in future generations of mobile networks. In particular, the 60 GHz band will play a crucial role in providing high-capacity data links for indoor applications. In this context, this tutorial presents a comprehensive review of indoor propagation models operating in the 60 GHz band, considering the main scenarios of interest. Propagation mechanisms such as reflection, diffraction, scattering, blockage, and material penetration, as well as large-scale path loss, are discussed in order to obtain a channel model for 60 GHz signals in indoor environments. Finally, comparisons were made using data obtained from a measurement campaign available in the literature in order to emphasize the importance of developing accurate channel models for future wireless communication systems operating in millimeter-waves bands.


2022 ◽  
Author(s):  
Md Abdul Latif Sarker ◽  
Md Fazlul Kader ◽  
Md Mostafa Kamal Sarker ◽  
Moon Lee ◽  
Dong Han

Abstract In this article, we present a black-hole-aided deep-helix (bh-dh) channel model to enhance information bound and mitigate a multiple-helix directional issue in Deoxyribonucleic acid (DNA) communications. The recent observations of DNA do not match with Shannon bound due to their multiple-helix directional issue. Hence, we propose a bh-dh channel model in this paper. The proposed bh-dh channel model follows a similar fashion of DNA and enriches the earlier DNA observations as well as achieving a composite like information bound. To do successfully the proposed bh-dh channel model, we first define a black-hole-aided Bernoulli-process and then consider a symmetric bh-dh channel model. After that, the geometric and graphical insight shows the resemblance of the proposed bh-dh channel model in DNA and Galaxy layout. In our exploration, the proposed bh-dh symmetric channel geometrically sketches a deep-pair-ellipse when a deep-pair information bit or digit is distributed in the proposed channel. Furthermore, the proposed channel graphically shapes as a beautiful circulant ring. The ring contains a central-hole, which looks like a central-black-hole of a Galaxy. The coordinates of the inner-ellipses denote a deep-double helix, and the coordinates of the outer-ellipses sketch a deep-parallel strand. Finally, the proposed bh-dh symmetric channel significantly outperforms the traditional binary-symmetric channel and is verified by computer simulations in terms of Shannon entropy and capacity bound.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 462
Author(s):  
Hong Anh Nguyen ◽  
Van Khang Nguyen ◽  
Klaus Witrisal

Ultra-Wide Bandwidth (UWB) and mm-wave radio systems can resolve specular multipath components (SMCs) from estimated channel impulse response measurements. A geometric model can describe the delays, angles-of-arrival, and angles-of-departure of these SMCs, allowing for a prediction of these channel features. For the modeling of the amplitudes of the SMCs, a data-driven approach has been proposed recently, using Gaussian Process Regression (GPR) to map and predict the SMC amplitudes. In this paper, the applicability of the proposed multipath-resolved, GPR-based channel model is analyzed by studying features of the propagation channel from a set of channel measurements. The features analyzed include the energy capture of the modeled SMCs, the number of resolvable SMCs, and the ranging information that could be extracted from the SMCs. The second contribution of the paper concerns the potential applicability of the channel model for a multipath-resolved, single-anchor positioning system. The predicted channel knowledge is used to evaluate the measurement likelihood function at candidate positions throughout the environment. It is shown that the environmental awareness created by the multipath-resolved, GPR-based channel model yields higher robustness against position estimation outliers.


Author(s):  
Yuqing Huang ◽  
Zhongqi Sun ◽  
Tianqi Dou ◽  
Jipeng Wang ◽  
Zhenhua Li ◽  
...  

Future quantum communication networks envisaged on a global scale will include various networks interlinked via optical fiber and free space channels. In recent years, quantum key distribution (QKD) protocol based on optical fiber has been extensively studied. Twin-field QKD (TF-QKD) may enable 550 km QKD using standard optical fiber without quantum repeaters. However, the performance of TF-QKD in free-space channel is still unclear. In this paper, a free-space channel model is proposed with specific turbulence characterization discussed. Here, the key rate of TF-QKD under multiple scenarios considering the variation of turbulence and different link configuration is investigated. Simulation results demonstrate that the performance of free-space TF-QKD is related to link configuration and turbulence motion which is determined by surface feature, time and height. Furthermore, TF-QKD protocol is a potential scheme for the free-space quantum communication.


2022 ◽  
Author(s):  
Swarnavo Sarkar ◽  
Jayan Rammohan

Living cells process information about their environment through the central dogma processes of transcription and translation, which drive the cellular response to stimuli. Here, we study the transfer of information from environmental input to the transcript and protein expression levels. Evaluation of both experimental and analogous simulation data reveals that transcription and translation are not two simple information channels connected in series. Instead, we show that the central dogma reactions often create a time-integrating information channel, where the translation channel receives and integrates multiple outputs from the transcription channel. This information channel model of the central dogma provides new information-theoretic selection criteria for the central dogma rate constants. Using the data for four well-studied species we show that their central dogma rate constants achieve information gain due to time integration while also keeping the loss due to stochasticity in translation relatively low (< 0.5 bits).


2022 ◽  
Vol 70 (1) ◽  
pp. 38-52
Author(s):  
Frank Schiller ◽  
Dan Judd ◽  
Peerasan Supavatanakul ◽  
Tina Hardt ◽  
Felix Wieczorek

Abstract A fundamental measure of safety communication is the residual error probability, i. e., the probability of undetected errors. For the detection of data errors, typically a Cyclic Redundancy Check (CRC) is applied, and the resulting residual error probability is determined based on the Binary Symmetric Channel (BSC) model. The use of this model had been questioned since several error types cannot be sufficiently described. Especially the increasing introduction of security algorithms into underlying communication layers requires a more adequate channel model. This paper introduces an enhanced model that extends the list of considered data error types by combining the BSC model with a Uniformly Distributed Segments (UDS) model. Although models beyond BSC are applied, the hitherto method of the calculation of the residual error probability can be maintained.


2022 ◽  
Vol 71 (2) ◽  
pp. 024101-024101
Author(s):  
Lu Xi-Cheng ◽  
◽  
Qiu Yang ◽  
Tian Jin ◽  
Wang Hai-Bo ◽  
...  

2022 ◽  
Vol 6 (1) ◽  
pp. 29-42
Author(s):  
Latih Saba'neh ◽  
◽  
Obada Al-Khatib ◽  

<abstract><p>Millimetre wave (mm-wave) spectrum (30-300GHz) is a key enabling technology in the advent of 5G. However, an accurate model for the mm-wave channel is yet to be developed as the existing 4G-LTE channel models (frequency below 6 GHz) exhibit different propagation attributes. In this paper, a spatial statistical channel model (SSCM) is considered that estimates the characteristics of the channel in the 28, 60, and 73 GHz bands. The SSCM is used to mathematically approximate the propagation path loss in different environments, namely, Urban-Macro, Urban-Micro, and Rural-Macro, under Line-of-Sight (LOS) and Non-Line-of-Sight (NLOS) conditions. The New York University (NYU) channel simulator is utilised to evaluate the channel model under various conditions including atmospheric effects, distance, and frequency. Moreover, a MIMO system has been evaluated under mm-wave propagation. The main results show that the 60 GHz band has the highest attenuation compared to the 28 and 73 GHz bands. The results also show that increasing the number of antennas is proportional to the condition number and the rank of the MIMO channel matrix.</p></abstract>


Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 257
Author(s):  
Xiuqi Deng ◽  
Xin Bian ◽  
Mingqi Li

In recent years, Faster-than-Nyquist (FTN) transmission has been regarded as one of the key technologies for future 6G due to its advantages in high spectrum efficiency. However, as a price to improve the spectrum efficiency, the FTN system introduces inter-symbol interference (ISI) at the transmitting end, whicheads to a serious deterioration in the performance of traditional receiving algorithms under high compression rates and harsh channel environments. The data-driven detection algorithm has performance advantages for the detection of high compression rate FTN signaling, but the current related work is mainly focused on the application in the Additive White Gaussian Noise (AWGN) channel. In this article, for FTN signaling in multipath channels, a data and model-driven joint detection algorithm, i.e., DMD-JD algorithm is proposed. This algorithm first uses the traditional MMSE or ZFinear equalizer to complete the channel equalization, and then processes the serious ISI introduced by FTN through the deepearning network based on CNN or LSTM, thereby effectively avoiding the problem of insufficient generalization of the deepearning algorithm in different channel scenarios. The simulation results show that in multipath channels, the performance of the proposed DMD-JD algorithm is better than that of purely model-based or data-driven algorithms; in addition, the deepearning network trained based on a single channel model can be well adapted to FTN signal detection under other channel models, thereby improving the engineering practicability of the FTN signal detection algorithm based on deepearning.


Sign in / Sign up

Export Citation Format

Share Document