full diversity
Recently Published Documents


TOTAL DOCUMENTS

433
(FIVE YEARS 60)

H-INDEX

30
(FIVE YEARS 4)

Horticulturae ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 74
Author(s):  
Maria Munawar ◽  
Atta Ur Rahman ◽  
Pablo Castillo ◽  
Dmytro P. Yevtushenko

The nematode family, Anguinidae, is a diverse group of polyphagous nematodes, generally known as fungal feeders or parasites of aerial plant parts. Here, we present the morphological and molecular characterization of adult females of two Nothotylenchus species, N. medians and N. similis, along with host association and geographical distribution data of the genus. Both species are recorded as new reports from Canada and designated as reference populations for future studies. Morphological or morphometrical variation was not observed in the Canadian population of N. medians and N. similis, in comparison with the original description. Phylogenetic analyses based on 18S and D2–D3 of 28S genes placed both species within Anguinidae. Since the biology of the genus Nothotylenchus has not been rigorously characterized, the habitat and distribution information presented in this study will shed some light on the ecology of these nematodes. Notably, the detection of N. medians and N. similis in our nematode inventory survey indicates that considerable Nothotylenchus diversity is hidden in these soils. Consequently, increased surveys and more in-depth research are needed to explore the full diversity of anguinids inhabiting these cultivated areas.


BMC Biology ◽  
2022 ◽  
Vol 20 (1) ◽  
Author(s):  
Bing Xie ◽  
Daniel Dashevsky ◽  
Darin Rokyta ◽  
Parviz Ghezellou ◽  
Behzad Fathinia ◽  
...  

Abstract Background The explosive radiation and diversification of the advanced snakes (superfamily Colubroidea) was associated with changes in all aspects of the shared venom system. Morphological changes included the partitioning of the mixed ancestral glands into two discrete glands devoted for production of venom or mucous respectively, as well as changes in the location, size and structural elements of the venom-delivering teeth. Evidence also exists for homology among venom gland toxins expressed across the advanced snakes. However, despite the evolutionary novelty of snake venoms, in-depth toxin molecular evolutionary history reconstructions have been mostly limited to those types present in only two front-fanged snake families, Elapidae and Viperidae. To have a broader understanding of toxins shared among extant snakes, here we first sequenced the transcriptomes of eight taxonomically diverse rear-fanged species and four key viperid species and analysed major toxin types shared across the advanced snakes. Results Transcriptomes were constructed for the following families and species: Colubridae - Helicops leopardinus, Heterodon nasicus, Rhabdophis subminiatus; Homalopsidae – Homalopsis buccata; Lamprophiidae - Malpolon monspessulanus, Psammophis schokari, Psammophis subtaeniatus, Rhamphiophis oxyrhynchus; and Viperidae – Bitis atropos, Pseudocerastes urarachnoides, Tropidolaeumus subannulatus, Vipera transcaucasiana. These sequences were combined with those from available databases of other species in order to facilitate a robust reconstruction of the molecular evolutionary history of the key toxin classes present in the venom of the last common ancestor of the advanced snakes, and thus present across the full diversity of colubroid snake venoms. In addition to differential rates of evolution in toxin classes between the snake lineages, these analyses revealed multiple instances of previously unknown instances of structural and functional convergences. Structural convergences included: the evolution of new cysteines to form heteromeric complexes, such as within kunitz peptides (the beta-bungarotoxin trait evolving on at least two occasions) and within SVMP enzymes (the P-IIId trait evolving on at least three occasions); and the C-terminal tail evolving on two separate occasions within the C-type natriuretic peptides, to create structural and functional analogues of the ANP/BNP tailed condition. Also shown was that the de novo evolution of new post-translationally liberated toxin families within the natriuretic peptide gene propeptide region occurred on at least five occasions, with novel functions ranging from induction of hypotension to post-synaptic neurotoxicity. Functional convergences included the following: multiple occasions of SVMP neofunctionalised in procoagulant venoms into activators of the clotting factors prothrombin and Factor X; multiple instances in procoagulant venoms where kunitz peptides were neofunctionalised into inhibitors of the clot destroying enzyme plasmin, thereby prolonging the half-life of the clots formed by the clotting activating enzymatic toxins; and multiple occasions of kunitz peptides neofunctionalised into neurotoxins acting on presynaptic targets, including twice just within Bungarus venoms. Conclusions We found novel convergences in both structural and functional evolution of snake toxins. These results provide a detailed roadmap for future work to elucidate predator–prey evolutionary arms races, ascertain differential clinical pathologies, as well as documenting rich biodiscovery resources for lead compounds in the drug design and discovery pipeline.


Author(s):  
Frederike Zeibig ◽  
Benjamin Kilian ◽  
Michael Frei

Abstract Key message We evaluated the potential of wheat wild relatives for the improvement in grain quality characteristics including micronutrients (Fe, Zn) and gluten and identified diploid wheats and the timopheevii lineage as the most promising resources. Abstract Domestication enabled the advancement of civilization through modification of plants according to human requirements. Continuous selection and cultivation of domesticated plants induced genetic bottlenecks. However, ancient diversity has been conserved in crop wild relatives. Wheat (Triticum aestivum L.; Triticum durum Desf.) is one of the most important staple foods and was among the first domesticated crop species. Its evolutionary diversity includes diploid, tetraploid and hexaploid species from the Triticum and Aegilops taxa and different genomes, generating an AA, BBAA/GGAA and BBAADD/GGAAAmAm genepool, respectively. Breeding and improvement in wheat altered its grain quality. In this review, we identified evolutionary patterns and the potential of wheat wild relatives for quality improvement regarding the micronutrients Iron (Fe) and Zinc (Zn), the gluten storage proteins α-gliadins and high molecular weight glutenin subunits (HMW-GS), and the secondary metabolite phenolics. Generally, the timopheevii lineage has been neglected to date regarding grain quality studies. Thus, the timopheevii lineage should be subject to grain quality research to explore the full diversity of the wheat gene pool.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Wei Song ◽  
Bing Guan

Reconfigurable intelligent surface (RIS) is considered to be a new technology with great potential and is being studied extensively and deeply. And the application extension of STBC in the RIS-aided scheme provides a new train of thought for the research of channel coding. In this paper, we propose we extend the scheme of using the RIS to adjust the phase and reconfigure the reflected signal and propose the design of the RIS-aided QO-STBC scheme and the RIS-aided QO-STBC scheme with interference cancellation. Particularly in the RIS-aided QO-STBC scheme with interference cancellation, the design can achieve the transmission of the full rate and full diversity using an auxiliary reflection group to eliminate the influence of interference term. Also, the advantages and disadvantages of the schemes are analyzed in the paper, and the decoding algorithms with different complexity used in the proposed schemes are described. The simulation results show that the performance of the RIS-aided QO-STBC scheme with interference cancellation is better than that of the RIS-aided QO-STBC scheme and the RIS-aided Alamouti scheme by about 5 dB and 7 dB at 1 0 − 3 BER because of diversity gain and coding gain.


Urban Forum ◽  
2021 ◽  
Author(s):  
Carole Ammann ◽  
Aïdas Sanogo ◽  
Barbara Heer

AbstractThis article claims space for secondary cities in urban studies. It criticizes that scientists tend to study urban life in metropolises and, hence, do not represent urban life in its full diversity. In reality, the majority of the worlds’ urban dwellers live in secondary cities; therefore, research on urbanity should reflect this fact. The article argues against simple approaches to secondary cities, such as defining them based on a single quantitative variable like population size. It rather proposes that anthropological research has a unique potential to reveal the urban dwellers’ relational and situational perceptions of, and perspectives towards, secondary cities. The paper puts this approach into practice by examining two West African secondary cities: Kankan in Guinea and Bouaké in Côte d’Ivoire.


Viruses ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1956
Author(s):  
D. Collins Owuor ◽  
Zaydah R. de Laurent ◽  
Gilbert K. Kikwai ◽  
Lillian M. Mayieka ◽  
Melvin Ochieng ◽  
...  

The spatiotemporal patterns of spread of influenza A(H1N1)pdm09 viruses on a countrywide scale are unclear in many tropical/subtropical regions mainly because spatiotemporally representative sequence data are lacking. We isolated, sequenced, and analyzed 383 A(H1N1)pdm09 viral genomes from hospitalized patients between 2009 and 2018 from seven locations across Kenya. Using these genomes and contemporaneously sampled global sequences, we characterized the spread of the virus in Kenya over several seasons using phylodynamic methods. The transmission dynamics of A(H1N1)pdm09 virus in Kenya were characterized by (i) multiple virus introductions into Kenya over the study period, although only a few of those introductions instigated local seasonal epidemics that then established local transmission clusters, (ii) persistence of transmission clusters over several epidemic seasons across the country, (iii) seasonal fluctuations in effective reproduction number (Re) associated with lower number of infections and seasonal fluctuations in relative genetic diversity after an initial rapid increase during the early pandemic phase, which broadly corresponded to epidemic peaks in the northern and southern hemispheres, (iv) high virus genetic diversity with greater frequency of seasonal fluctuations in 2009–2011 and 2018 and low virus genetic diversity with relatively weaker seasonal fluctuations in 2012–2017, and (v) virus spread across Kenya. Considerable influenza virus diversity circulated within Kenya, including persistent viral lineages that were unique to the country, which may have been capable of dissemination to other continents through a globally migrating virus population. Further knowledge of the viral lineages that circulate within understudied low-to-middle-income tropical and subtropical regions is required to understand the full diversity and global ecology of influenza viruses in humans and to inform vaccination strategies within these regions.


2021 ◽  
Vol 5 ◽  
Author(s):  
Panatda Pibul ◽  
Siriuma Jawjit

Rising demand for off-season durian production in Thailand has led to increased agrichemical use and potential environmental and health concerns. In this study, we surveyed 117 farmers and collected water samples from 11 villages in Krungching Sub-district. Overall, 108 agrochemicals were listed as being used in off-season durian production, but we focused on residual concentrations of the persistent herbicides glyphosate and paraquat in surface water. We applied a pollution release and transfer registry for 2016 to determine an application rate of 288,149 kg/year for these agrichemicals. These were primarily detected during the dry season, and not the wet season. This reporting system can be used to develop seasonal environmental surveillance and monitoring tools for more sustainable use of agrochemical substances in off-season durian production in environmentally sensitive areas such as the Krungching River watershed, especially during the first stage of cultivation (dry season), in order to ensure the use of agricultural chemicals under appropriate circumstances. Further studies are needed to better understand the full diversity of persistent agrochemical substance usage and disposal, in order to reorient agricultural activities to focus on local needs and capabilities as part of efforts to implement more sustainable agriculture in Thailand.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11841
Author(s):  
Vasco Elbrecht ◽  
Angie Lindner ◽  
Laura Manerus ◽  
Dirk Steinke

Arthropod communities in buildings have not been extensively studied, although humans have always shared their homes with them. In this study we explored if arthropod DNA can be retrieved and metabarcoded from indoor environments through the collection of dead specimens in light fixtures to better understand what shapes arthropod diversity in our homes. Insects were collected from 45 light fixtures at the Centre for Biodiversity Genomics (CBG, Guelph, Canada), and by community scientists at 12 different residential homes in Southern Ontario. The CBG ground floor of the CBG showed the greatest arthropod diversity, especially in light fixtures that were continuously illuminated. The community scientist samples varied strongly by light fixture type, lightbulb used, time passed since lamp was last cleaned, and specimen size. In all cases, the majority of OTUs was not shared between samples even within the same building. This study demonstrates that light fixtures might be a useful resource to determine arthropod diversity in our homes, but individual samples are likely not representative of the full diversity.


Sign in / Sign up

Export Citation Format

Share Document