Arithmetic Certainty

Author(s):  
José Ferreirós

This chapter considers the idea that we have certainty in our basic arithmetic knowledge. The claim that arithmetical knowledge enjoys certainty cannot be extended to a similar claim about number theory “as a whole.” It is thus necessary to distinguish between elementary number theory and other, more advanced, levels in the study of numbers: algebraic number theory, analytic number theory, and perhaps set-theoretic number theory. The chapter begins by arguing that the axioms of Peano Arithmetic are true of counting numbers and describing some elements found in counting practices. It then offers an account of basic arithmetic and its certainty before discussing a model theory of arithmetic and the logic of mathematics. Finally, it asks whether elementary arithmetic, built on top of the practice of counting, should be classical arithmetic or intuitionistic arithmetic.

10.37236/811 ◽  
2008 ◽  
Vol 15 (1) ◽  
Author(s):  
J. Conde ◽  
J. Gimbert ◽  
J. Gonzàlez ◽  
J. M. Miret ◽  
R. Moreno

Almost Moore digraphs appear in the context of the degree/diameter problem as a class of extremal directed graphs, in the sense that their order is one less than the unattainable Moore bound $M(d,k)=1+d+\cdots +d^k$, where $d>1$ and $k>1$ denote the maximum out-degree and diameter, respectively. So far, the problem of their existence has only been solved when $d=2,3$ or $k=2$. In this paper, we prove that almost Moore digraphs of diameter $k=3$ do not exist for any degree $d$. The enumeration of almost Moore digraphs of degree $d$ and diameter $k=3$ turns out to be equivalent to the search of binary matrices $A$ fulfilling that $AJ=dJ$ and $I+A+A^2+A^3=J+P$, where $J$ denotes the all-one matrix and $P$ is a permutation matrix. We use spectral techniques in order to show that such equation has no $(0,1)$-matrix solutions. More precisely, we obtain the factorization in ${\Bbb Q}[x]$ of the characteristic polynomial of $A$, in terms of the cycle structure of $P$, we compute the trace of $A$ and we derive a contradiction on some algebraic multiplicities of the eigenvalues of $A$. In order to get the factorization of $\det(xI-A)$ we determine when the polynomials $F_n(x)=\Phi_n(1+x+x^2+x^3)$ are irreducible in ${\Bbb Q}[x]$, where $\Phi_n(x)$ denotes the $n$-th cyclotomic polynomial, since in such case they become 'big pieces' of $\det(xI-A)$. By using concepts and techniques from algebraic number theory, we prove that $F_n(x)$ is always irreducible in ${\Bbb Q}[x]$, unless $n=1,10$. So, by combining tools from matrix and number theory we have been able to solve a problem of graph theory.


Sign in / Sign up

Export Citation Format

Share Document