The Large-Scale Structure of the Universe

Author(s):  
P. J. E. Peebles

An instant landmark on its publication, this book remains the essential introduction to this vital area of research. Written by one of the world's most esteemed theoretical cosmologists, it provides an invaluable historical introduction to the subject, and an enduring overview of key methods, statistical measures, and techniques for dealing with cosmic evolution. With characteristic clarity and insight, the author focuses on the largest known structures — galaxy clusters — weighing the empirical evidence of the nature of clustering and the theories of how it evolves in an expanding universe. A must-have reference for students and researchers alike, this edition introduces a new generation of readers to a classic text in modern cosmology.

1990 ◽  
Vol 43 (2) ◽  
pp. 159
Author(s):  
E Saar

Implications of the observed large scale structure on the physics of the early universe are described. A short review of Soviet work on the subject is given, and the present status of the fractal model of the large scale structure is discussed.


1974 ◽  
Vol 63 ◽  
pp. 175-193
Author(s):  
Joseph Silk

Perhaps the most challenging problem confronting a cosmologist is to reconcile the observed large-scale structure of the Universe with the Friedmann-Lemaître cosmological models that have gained such widespread acceptance in recent years (cf. however the alternative viewpoint, as exemplified in this Symposium by Arp and others). In this review, I shall look anew at the spectrum of density inhomogeneities that survive decoupling of matter and radiation at z ~ 1000 and provide the primordial fluctuations that can eventually generate galaxies. A closely related matter, that of the associated fluctuations in the background radiation, is discussed elsewhere in this volume by Doroshkevich, Sunyaev and Zel'dovich.


1995 ◽  
Vol 48 (6) ◽  
pp. 1083 ◽  
Author(s):  
PJ Quinn

N-body models running on supercomputers have been widely used to explore the development of structure in the expanding Universe. Recent results from the COBE satellite have provided a global normalisation of these models which now allows detailed comparisons to be drawn between observations and model predictions. Some predictions of the cold dark matter primordial perturbation spectrum are now shown to be consistent with surveys of galaxy redshifts.


Fractals ◽  
2003 ◽  
Vol 11 (supp01) ◽  
pp. 271-279 ◽  
Author(s):  
LUCIANO PIETRONERO ◽  
MAURIZIO BOTTACCIO ◽  
MARCO MONTUORI ◽  
FRANCESCO SYLOS LABINI

The study of the properties of cosmic structures in the universe is one of the most fascinating subject of the modern cosmology research. Far from being predicted, the large scale structure of the matter distribution is a very recent discovery, which continuosly exhibits new features and issues. We have faced such topic along two directions; from one side we have studied the correlation properties of the cosmic structures, that we have found substantially different from the commonly accepted ones. From the other side, we have studied the statistical properties of the very simplified system, in the attempt to capture the essential ingredients of the formation of the observed strucures.


2012 ◽  
Vol 16 (1 and 2) ◽  
pp. 283-303
Author(s):  
Lucia Ayala

The idea of a plurality of worlds, consolidated in the seventeenth and eighteenth centuries, is one of the most inspiring and exciting chapters in the history of astronomy. Nevertheless, one crucial aspect has yet to be written. In this paper I propose to recompose the fascinating visual mosaic around the subject, in order to establish the basis for a largely forgotten iconography. It represents a key period in the evolution of the notions around the large-scale structure of the universe, one of the milestones in Early Modern cosmology. This tradition continued until the nineteenth century, when astronomers such as William Herschel still considered the existence of multiple similar inhabited systems. Today, when extrasolar planets and the cosmic web are in the forefront of the astrophysical vocabulary and its images are so popular, reflecting on the visual genealogy of this field acquires special relevance. This paper invites the reader to look at the sky through a telescope provided with art historical lenses.


Author(s):  
P. J. E. Peebles

This chapter traces the history of the development of ideas on the large-scale structure of the universe. Modern discussions of the nature of the large-scale matter distribution can be traced back to three central ideas. In 1917, Albert Einstein argued that a closed homogeneous world model fits very well into general relativity theory and the requirements of Mach's principle. In 1926, Edwin Hubble showed that the large-scale distribution of galaxies is close to uniform with no indication of an edge or boundary. In 1927, Georges Lemaître showed that the uniform distribution of galaxies fits very well with the pattern of galaxy redshifts. The chapter then assesses several questions. The first is whether the universe really is homogeneous. Could the homogeneity of the universe have been deduced ahead of time from general principles? Or might it be a useful guide to new principles? It also asks how clustering evolves in an expanding universe, what its origin is, and what this reveals about the nature of the universe.


2012 ◽  
Vol 27 (04) ◽  
pp. 1250014 ◽  
Author(s):  
PAVAN K. ALURI ◽  
PANKAJ JAIN

We show that perturbations generated during the anisotropic pre-inflationary stage of cosmic evolution may affect cosmological observations today for a certain range of parameters. Due to the anisotropic nature of the universe during such early times, it might explain some of the observed signals of large scale anisotropy. In particular, we argue that the alignment of CMB quadrupole and octopole may be explained by the Sachs–Wolfe effect due to the large scale anisotropic modes from very early times of cosmological evolution. We also comment on how the observed dipole modulation of CMB power may be explained within this framework.


2011 ◽  
Vol 54 (10) ◽  
pp. 983-1005 ◽  
Author(s):  
Vladimir N Lukash ◽  
Elena V Mikheeva ◽  
A M Malinovsky

Physics Today ◽  
1981 ◽  
Vol 34 (8) ◽  
pp. 62-63 ◽  
Author(s):  
P. J. E. Peebles ◽  
Simon D. M. White

Sign in / Sign up

Export Citation Format

Share Document