early universe
Recently Published Documents


TOTAL DOCUMENTS

2186
(FIVE YEARS 324)

H-INDEX

96
(FIVE YEARS 12)

2022 ◽  
Author(s):  
Llorenç Espinosa-Portalés
Keyword(s):  

Author(s):  
J. Matthee ◽  
A. Feltre ◽  
M. Maseda ◽  
T. Nanayakkara ◽  
L. Boogaard ◽  
...  
Keyword(s):  

10.1142/11138 ◽  
2022 ◽  
Author(s):  
Valery A Rubakov ◽  
Dmitry S Gorbunov
Keyword(s):  

2022 ◽  
pp. 291-313
Author(s):  
R.K. Pathria ◽  
Paul D. Beale
Keyword(s):  

2022 ◽  
Vol 137 (1) ◽  
Author(s):  
G. A. Monerat ◽  
F. G. Alvarenga ◽  
S. V. B. Gonçalves ◽  
G. Oliveira-Neto ◽  
C. G. M. Santos ◽  
...  
Keyword(s):  

Author(s):  
Mohammed Al-Fadhli

The recent observation of the G2 gas cloud orbit around the galactic centre has challenged the model of a mere supermassive black hole that should have destroyed it. In addition, the Planck Legacy 2018 (PL18) release has preferred a positively curved early Universe with a confidence level exceeding 99%. In this study, the formation of a galaxy from the collapse of a supermassive gas cloud in the early Universe is modelled based on extended field equations as a 4D relativistic cloud-world that flows and spins through a 4D conformal bulk of an initial positive curvature considering the preference of the PL18 release. Owning to the curved background, this scenario of galaxy formation reveals that the core of the galaxy undergoes a forced vortex formation with a central event horizon leading to opposite vortices (traversable wormholes) that are spatially shrinking through evolving in the conformal time. It indicates that the galaxy and its core are formed at the same process where the surrounding gas clouds form the spiral arms due to the frame-dragging induced by the fast-rotating core. Further, the bulk conformal curvature evolution demonstrates the fast orbital speed of outer stars owing to external fields exerted on galaxies as they travel through conformally curved space-time. Accordingly, the G2 gas cloud that only faced the drag effects could be explained if its orbit is around the vortex but at a distance from the central event horizon. These findings could explain the fast orbital speed of outer stars where the galaxy formation and its core simultaneously could explain the formation of the supermassive compact galaxy cores with a mass of ~109 M⊙ at just 6% of the current Universe age and thus could resolve the black hole hierarchy problem.


Author(s):  
Leonardo Badurina ◽  
Oliver Buchmueller ◽  
John Ellis ◽  
Marek Lewicki ◽  
Christopher McCabe ◽  
...  

We survey the prospective sensitivities of terrestrial and space-borne atom interferometers to gravitational waves generated by cosmological and astrophysical sources, and to ultralight dark matter. We discuss the backgrounds from gravitational gradient noise in terrestrial detectors, and also binary pulsar and asteroid backgrounds in space-borne detectors. We compare the sensitivities of LIGO and LISA with those of the 100 m and 1 km stages of the AION terrestrial AI project, as well as two options for the proposed AEDGE AI space mission with cold atom clouds either inside or outside the spacecraft, considering as possible sources the mergers of black holes and neutron stars, supernovae, phase transitions in the early Universe, cosmic strings and quantum fluctuations in the early Universe that could have generated primordial black holes. We also review the capabilities of AION and AEDGE for detecting coherent waves of ultralight scalar dark matter. AION-REPORT/2021-04 KCL-PH-TH/2021-61, CERN-TH-2021-116 This article is part of the theme issue ‘Quantum technologies in particle physics’.


Universe ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 501
Author(s):  
Stanislav Alexeyev ◽  
Daniil Krichevskiy ◽  
Boris Latosh

Validity of three gravity models with non-linear realization of conformal symmetry previously discussed in literature is addressed. Two models are found to be equivalent up to a change of coset coordinates. It was found that models contain ghost degrees of freedom that may be excluded by an introduction of an additional symmetry to the target space. One model found to be safe in early universe. The others found to lack spin-2 degrees of freedom and to have peculiar coupling to matter degrees of freedom.


Sign in / Sign up

Export Citation Format

Share Document