Introduction

Author(s):  
Sergiu Klainerman ◽  
Jérémie Szeftel

This introductory chapter provides a quick review of the basic concepts of general relativity relevant to this work. The main object of Albert Einstein's general relativity is the spacetime. The nonlinear stability of the Kerr family is one of the most pressing issues in mathematical general relativity today. Roughly, the problem is to show that all spacetime developments of initial data sets, sufficiently close to the initial data set of a Kerr spacetime, behave in the large like a (typically another) Kerr solution. This is not only a deep mathematical question but one with serious astrophysical implications. Indeed, if the Kerr family would be unstable under perturbations, black holes would be nothing more than mathematical artifacts. The goal of this book is to prove the nonlinear stability of the Schwarzschild spacetime under axially symmetric polarized perturbations, namely, solutions of the Einstein vacuum equations for asymptotically flat 1 + 3 dimensional Lorentzian metrics which admit a hypersurface orthogonal spacelike Killing vectorfield Z with closed orbits.

Author(s):  
Nathalie Deruelle ◽  
Jean-Philippe Uzan

This chapter covers the Kerr metric, which is an exact solution of the Einstein vacuum equations. The Kerr metric provides a good approximation of the spacetime near each of the many rotating black holes in the observable universe. This chapter shows that the Einstein equations are nonlinear. However, there exists a class of metrics which linearize them. It demonstrates the Kerr–Schild metrics, before arriving at the Kerr solution in the Kerr–Schild metrics. Since the Kerr solution is stationary and axially symmetric, this chapter shows that the geodesic equation possesses two first integrals. Finally, the chapter turns to the Kerr black hole, as well as its curvature singularity, horizons, static limit, and maximal extension.


2004 ◽  
Vol 93 (8) ◽  
Author(s):  
Piotr T. Chruściel ◽  
James Isenberg ◽  
Daniel Pollack

2011 ◽  
Vol 304 (3) ◽  
pp. 637-647 ◽  
Author(s):  
Piotr T. Chruściel ◽  
Justin Corvino ◽  
James Isenberg

1994 ◽  
Vol 35 (8) ◽  
pp. 4157-4177 ◽  
Author(s):  
Robert Geroch ◽  
Shyan‐Ming Perng

Author(s):  
Francisco de Melo Viríssimo ◽  
Paul A. Milewski

The problem of two layers of immiscible fluid, bordered above by an unbounded layer of passive fluid and below by a flat bed, is formulated and discussed. The resulting equations are given by a first-order, four-dimensional system of PDEs of mixed-type. The relevant physical parameters in the problem are presented and used to write the equations in a non-dimensional form. The conservation laws for the problem, which are known to be only six, are explicitly written and discussed in both non-Boussinesq and Boussinesq cases. Both dynamics and nonlinear stability of the Cauchy problem are discussed, with focus on the case where the upper unbounded passive layer has zero density, also called the free surface case. We prove that the stability of a solution depends only on two ‘baroclinic’ parameters (the shear and the difference of layer thickness, the former being the most important one) and give a precise criterion for the system to be well-posed. It is also numerically shown that the system is nonlinearly unstable, as hyperbolic initial data evolves into the elliptic region before the formation of shocks. We also discuss the use of simple waves as a tool to bound solutions and preventing a hyperbolic initial data to become elliptic and use this idea to give a mathematical proof for the nonlinear instability.


Sign in / Sign up

Export Citation Format

Share Document