observable universe
Recently Published Documents


TOTAL DOCUMENTS

129
(FIVE YEARS 39)

H-INDEX

18
(FIVE YEARS 2)

Author(s):  
Jianglai Liu

Dark matter, an invisible substance which constitutes 85% of the matter in the observable universe, is one of the greatest puzzles in physics and astronomy today. Dark matter can be made of a new type of fundamental particle, not yet observed due to its feeble interactions with visible matter. In this talk, we present the first results of PandaX-4T, a 4-ton-scale liquid xenon dark matter observatory, searching for these dark matter particles from deep underground. We will briefly summarize the performance of PandaX-4T, introduces details in the data analysis, and present the latest search results on dark matter-nucleon interactions.


2022 ◽  
Vol 08 (01) ◽  
pp. 1-13
Author(s):  
Xiaoyun Li ◽  
Suoang Longzhou ◽  
La Ba Sakya Genzon
Keyword(s):  

Author(s):  
Jian-Bin Bao ◽  
Nicholas P. Bao

There are unsolved problems related to inflation, gravity, dark matter, dark energy, missing antimatter, and the birth of the universe. Some of them can be better answered by assuming the existence of aether and hypoatoms. Both were created during the inflation in the very early universe. While aether forms vacuum, hypoatoms, composed of both matter and antimatter and believed to be neutrinos, form all observable matter. In vacuum, aether exists between the particle-antiparticle dark matter form and the dark energy form in a dynamic equilibrium: A + A-bar = gamma + gamma. The same reaction stabilizes hypoatoms and generates a 3-dimensional sink flow of aether that causes gravity. Based on the hypoatom structure, the singularity does not exist inside a black hole; the core of the black hole is a hypoatom star or neutrino star. By gaining enough mass, ca. 3 X 1022 Msun, to exceed neutrino degeneracy pressure, the black hole collapses or annihilates into the singularity, thus turning itself into a white hole or a Big Bang. The universe is anisotropic and nonhomogeneous. Its center, or where the Big Bang happened, is at about 0.671 times the radius of the observable universe at the Galactic coordinates (l, b) ~ (286°, -42°). If we look from the Earth to the center of the universe, the universe is rotating clockwise.


Author(s):  
L. A. L. da Silva

Abstract We present an alternative equation to estimate the probable number N of self-conscious intelligent technological societies (SCITSs) within the radius of the observable universe. This equation has only one poorly-known factor, Pc, the SCITS's formation probability, which can be estimated within an uncertainty by a factor of 102 (10−11 ≤ Pc ≤ 10−9) by applying the restriction imposed by Fermi's Paradox. The SCITS's formation rate for a typical spiral galaxy is then estimated as ≈1 civ Gyr−1. For a very optimistic maximum life expectancy ≈108 yr, the conclusion is that two civilizations never coexist in the same galaxy. Our estimated values for Pc are compatible with current biological and astrophysical evidences. We also propose an alternative astrosociological classification scheme which enables us to speculate about possible evolutionary paths for SCITSs in the universe. The so-called ‘Closed Bottle Neck’ (CBN) scenario suggests that civilizations are no exit evolutionary ways. We argue that simply there would not be interstellar travels nor Galaxy colonization or a Galactic Club. Thus Fermi's Paradox results eliminated, and the perspectives about the future of our own civilization may not be positive.


2021 ◽  
Vol 81 (11) ◽  
Author(s):  
João Luís Rosa ◽  
Matheus A. Marques ◽  
Dionisio Bazeia ◽  
Francisco S. N. Lobo

AbstractBraneworld scenarios consider our observable universe as a brane embedded in a five-dimensional bulk. In this work, we consider thick braneworld systems in the recently proposed dynamically equivalent scalar–tensor representation of f(R, T) gravity, where R is the Ricci scalar and T the trace of the stress–energy tensor. In the general $$f\left( R,T\right) $$ f R , T case we consider two different models: a brane model without matter fields where the geometry is supported solely by the gravitational fields, and a second model where matter is described by a scalar field with a potential. The particular cases for which the function $$f\left( R,T\right) $$ f R , T is separable in the forms $$F\left( R\right) +T$$ F R + T and $$R+G\left( T\right) $$ R + G T , which give rise to scalar–tensor representations with a single auxiliary scalar field, are studied separately. The stability of the gravitational sector is investigated and the models are shown to be stable against small perturbations of the metric. Furthermore, we show that in the $$f\left( R,T\right) $$ f R , T model in the presence of an extra matter field, the shape of the graviton zero-mode develops internal structure under appropriate choices of the parameters of the model.


2021 ◽  
Vol 2021 (11) ◽  
pp. 050
Author(s):  
Shadab Alam ◽  
Christian Arnold ◽  
Alejandro Aviles ◽  
Rachel Bean ◽  
Yan-Chuan Cai ◽  
...  

Abstract Shortly after its discovery, General Relativity (GR) was applied to predict the behavior of our Universe on the largest scales, and later became the foundation of modern cosmology. Its validity has been verified on a range of scales and environments from the Solar system to merging black holes. However, experimental confirmations of GR on cosmological scales have so far lacked the accuracy one would hope for — its applications on those scales being largely based on extrapolation and its validity there sometimes questioned in the shadow of the discovery of the unexpected cosmic acceleration. Future astronomical instruments surveying the distribution and evolution of galaxies over substantial portions of the observable Universe, such as the Dark Energy Spectroscopic Instrument (DESI), will be able to measure the fingerprints of gravity and their statistical power will allow strong constraints on alternatives to GR. In this paper, based on a set of N-body simulations and mock galaxy catalogs, we study the predictions of a number of traditional and novel summary statistics beyond linear redshift distortions in two well-studied modified gravity models — chameleon f(R) gravity and a braneworld model — and the potential of testing these deviations from GR using DESI. These summary statistics employ a wide array of statistical properties of the galaxy and the underlying dark matter field, including two-point and higher-order statistics, environmental dependence, redshift space distortions and weak lensing. We find that they hold promising power for testing GR to unprecedented precision. The major future challenge is to make realistic, simulation-based mock galaxy catalogs for both GR and alternative models to fully exploit the statistic power of the DESI survey (by matching the volumes and galaxy number densities of the mocks to those in the real survey) and to better understand the impact of key systematic effects. Using these, we identify future simulation and analysis needs for gravity tests using DESI.


2021 ◽  
pp. 85-105
Author(s):  
Bruno Guiderdoni

AbstractWe review the role of chance, contingency, necessity, and providence among cosmic properties. The materialistic worldview in which the patterns of the universe result from random processes and humans exist in an “indifferent” universe is examined, as well as the current evidence for a fine-tuned universe. The multiverse is the preferred solution to explain why the properties of our observable universe appear to be bio-friendly. It reintroduces randomness and contingency into the cosmic process. However, this explanation comes at the cost of non-testability. And it is argued that there is no certainty about the evacuation of some kind of remaining fine-tuning in the (hypothetical) fundamental law that rules the multiverse.


2021 ◽  
Vol 2021 (06) ◽  
pp. 0630
Author(s):  
Conrad Dale Johnson

This paper continues an argument begun in "Why Quantum Mechanics Makes Sense", which explores the conditions under which a physical world can define and communicate any kind of information. Since it appears that nearly all of what’s known in our most fundamental theories may be needed to do this, the question arises as to how such a complex, many-leveled system of rules and principles could have emerged from much simpler initial conditions. Following the earlier treatment of Quantum Mechanics, the initial state of the universe is taken to be a plenum of unconstrained (and therefore structureless) possibility. Any sort of system can emerge, in these conditions, so long as it’s able to define all its constraints in terms of each other – as our observable universe does. I attempt an "archaeological" analysis of currently known physics into component layers of self-defining structure, each of which can be understood as emergent on the basis of previously established constraints. I also consider how this kind of reconstruction might relate to our currently well-established Concordance Model of the early history of our universe.


2021 ◽  
Vol 81 (9) ◽  
Author(s):  
P. G. N. de Vegvar

AbstractAn integral kernel representation for the commutative $$\star $$ ⋆ -product on curved classical spacetime is introduced. Its convergence conditions and relationship to a Drin’feld differential twist are established. A $$\star $$ ⋆ -Einstein field equation can be obtained, provided the matter-based twist’s vector generators are fixed to self-consistent values during the variation in order to maintain $$\star $$ ⋆ -associativity. Variations not of this type are non-viable as classical field theories. $$\star $$ ⋆ -Gauge theory on such a spacetime can be developed using $$\star $$ ⋆ -Ehresmann connections. While the theory preserves Lorentz invariance and background independence, the standard ADM $$3+1$$ 3 + 1 decomposition of 4-diffs in general relativity breaks down, leading to different $$\star $$ ⋆ -constraints. No photon or graviton ghosts are found on $$\star $$ ⋆ -Minkowski spacetime. $$\star $$ ⋆ -Friedmann equations are derived and solved for $$\star $$ ⋆ -FLRW cosmologies. Big Bang Nucleosynthesis restricts expressions for the twist generators. Allowed generators can be constructed which account for dark matter as arising from a twist producing non-standard model matter field. The theory also provides a robust qualitative explanation for the matter-antimatter asymmetry of the observable Universe. Particle exchange quantum statistics encounters thresholded modifications due to violations of the cluster decomposition principle on the nonlocality length scale $$\sim 10^{3-5} \,L_P$$ ∼ 10 3 - 5 L P . Precision Hughes–Drever measurements of spacetime anisotropy appear as the most promising experimental route to test deformed general relativity.


Physics ◽  
2021 ◽  
Vol 3 (3) ◽  
pp. 669-677
Author(s):  
Gurgen G. Adamian ◽  
Nikolai V. Antonenko ◽  
Horst Lenske ◽  
Vazgen V. Sargsyan

Using the model based on the Regge-like laws, new analytical formulas are obtained for the moment of inertia, the rotation frequency, and the radius of astronomical non-exotic objects (planets, stars, galaxies, and clusters of galaxies). The rotation frequency and moment of inertia of a neutron star and the observable Universe are estimated. The estimates of the average numbers of stars and galaxies in the observable Universe are given. The Darwin instability effect in the binary systems (di-planets, di-stars, and di-galaxies) is also analyzed.


Sign in / Sign up

Export Citation Format

Share Document