passive layer
Recently Published Documents


TOTAL DOCUMENTS

343
(FIVE YEARS 100)

H-INDEX

26
(FIVE YEARS 5)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 476
Author(s):  
Pedro P. Socorro-Perdomo ◽  
Néstor R. Florido-Suárez ◽  
Julia C. Mirza-Rosca ◽  
Mircea Vicentiu Saceleanu

The increased popularity of Ti and its alloys as important biomaterials is driven by their low modulus, greater biocompatibility, and better corrosion resistance in comparison to traditional biomaterials, such as stainless steel and Co–Cr alloys. Ti alloys are successfully used in severe stress situations, such as Ti–6Al–4V, but this alloy is related to long-term health problems and, in response, different Ti alloys composed of non-toxic and non-allergic elements such as Nb, Zr, Mo, and Ta have been developed for biomedical applications. In this context, binary alloys of titanium and tantalum have been developed and are predicted to be potential products for medical purposes. More than this, today, novel biocompatible alloys such as high entropy alloys with Ti and Ta are considered for biomedical applications and therefore it is necessary to clarify the influence of tantalum on the behavior of the alloy. In this study, various Ti–xTa alloys (with x = 5, 15, 25, and 30) were characterized using different techniques. High-resolution maps of the materials’ surfaces were generated by scanning tunneling microscopy (STM), and atom distribution maps were obtained by energy dispersive X-ray spectroscopy (EDS). A thorough output of chemical composition, and hence the crystallographic structure of the alloys, was identified by X-ray diffraction (XRD). Additionally, the electrochemical behavior of these Ti–Ta alloys was investigated by EIS in simulated body fluid at different potentials. The passive layer resistance increases with the potential due to the formation of the passive layer of TiO2 and Ta2O5 and then decreases due to the dissolution processes through the passive film. Within the Ti–xTa alloys, Ti–25Ta demonstrates excellent passive layer and corrosion resistance properties, so it seems to be a promising product for metallic medical devices.


CORROSION ◽  
10.5006/3767 ◽  
2022 ◽  
Author(s):  
Malvika Karri ◽  
Amit Verma ◽  
J.B. Singh ◽  
Sunil Kumar Bonagani ◽  
U.K. Goutam

This work seeks to understand the underlying mechanism involved in passivity of Ni-Cr-Mo alloys in a less concentrated HCl solution (1M) by systematically varying contents of Cr and Mo solutes in model Ni-Cr-Mo alloys. Corrosion behaviour was evaluated based on potentiodynamic polarisation tests carried out in conjunction with electrochemical impedance and x-ray photoelectron spectroscopies of passive films that formed on alloys during their exposure to the HCl solution. Results have shown that an increase in Mo alone is not sufficient to improve the corrosion resistance of the alloys at lower concentrations of HCl. Optimum concentrations of Cr and Mo solutes have been found to be in the vicinity of ~17 wt.% Cr and ~19 wt.% Mo for superior corrosion resistance of the alloys. This was attributed to the protection of the Cr2O3 layer as a consequence of the enrichment of Mo6+ ions in the passive film in 1M HCl solution.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8447
Author(s):  
Eyglis Ledesma ◽  
Ivan Zamora ◽  
Arantxa Uranga ◽  
Francesc Torres ◽  
Núria Barniol

In this paper, guidelines for the optimization of piezoelectrical micromachined ultrasound transducers (PMUTs) monolithically integrated over a CMOS technology are developed. Higher acoustic pressure is produced by PMUTs with a thin layer of AlN piezoelectrical material and Si3N4 as a passive layer, as is studied here with finite element modeling (FEM) simulations and experimental characterization. Due to the thin layers used, parameters such as residual stress become relevant as they produce a buckled structure. It has been reported that the buckling of the membrane due to residual stress, in general, reduces the coupling factor and consequently degrades the efficiency of the acoustic pressure production. In this paper, we show that this buckling can be beneficial and that the fabricated PMUTs exhibit enhanced performance depending on the placement of the electrodes. This behavior was demonstrated experimentally and through FEM. The acoustic characterization of the fabricated PMUTs shows the enhancement of the PMUT performance as a transmitter (with 5 kPa V−1 surface pressure for a single PMUT) and as a receiver (12.5 V MPa−1) in comparison with previously reported devices using the same MEMS-on-CMOS technology as well as state-of-the-art devices.


Biosensors ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 514
Author(s):  
Tung Pham ◽  
Ying Chen ◽  
Jhoann Lopez ◽  
Mei Yang ◽  
Thien-Toan Tran ◽  
...  

Molybdenum disulfide (MoS2) features a band gap of 1.3 eV (indirect) to 1.9 eV (direct). This tunable band gap renders MoS2 a suitable conducting channel for field-effect transistors (FETs). In addition, the highly sensitive surface potential in MoS2 layers allows the feasibility of FET applications in biosensors, where direct immobilization and detection of biological molecules are conducted in wet conditions. In this work, we report, for the first time, the degradation of chemical vapor deposition (CVD) grown MoS2 FET-based sensors in the presence of phosphate buffer and water, which caused false positive response in detection. We conclude the degradation was originated by physical delamination of MoS2 thin films from the SiO2 substrate. The problem was alleviated by coating the sensors with a 30 nm thick aluminum oxide (Al2O3) layer using atomic layer deposition technique (ALD). This passive oxide thin film not only acted as a protecting layer against the device degradation but also induced a strong n-doping onto MoS2, which permitted a facile method of detection in MoS2 FET-based sensors using a low-power mode chemiresistive I-V measurement at zero gate voltage (Vgate = 0 V). Additionally, the oxide layer provided available sites for facile functionalization with bioreceptors. As immunoreaction plays a key role in clinical diagnosis and environmental analysis, our work presented a promising application using such enhanced Al2O3-coated MoS2 chemiresistive biosensors for detection of HIgG with high sensitivity and selectivity. The biosensor was successfully applied to detect HIgG in artificial urine, a complex matrix containing organics and salts.


2021 ◽  
Vol 22 (24) ◽  
pp. 13209
Author(s):  
Agnieszka Chmielewska ◽  
Anna Dobkowska ◽  
Ewa Kijeńska-Gawrońska ◽  
Michał Jakubczak ◽  
Agnieszka Krawczyńska ◽  
...  

In this work, NiTi alloy parts were fabricated using laser powder bed fusion (LBPF) from pre-alloyed NiTi powder and in situ alloyed pure Ni and Ti powders. Comparative research on the corrosive and biological properties of both studied materials was performed. Electrochemical corrosion tests were carried out in phosphate buffered saline at 37 °C, and the degradation rate of the materials was described based on Ni ion release measurements. Cytotoxicity, bacterial growth, and adhesion to the surface of the fabricated coupons were evaluated using L929 cells and spherical Escherichia coli (E. coli) bacteria, respectively. The in situ alloyed NiTi parts exhibit slightly lower corrosion resistance in phosphate buffered saline solution than pre-alloyed NiTi. Moreover, the passive layer formed on in situ alloyed NiTi is weaker than the one formed on the NiTi fabricated from pre-alloyed NiTi powder. Furthermore, in situ alloyed NiTi and NiTi made from pre-alloyed powders have comparable cytotoxicity and biological properties. Overall, the research has shown that nitinol sintered using in situ alloyed pure Ni and Ti is potentially useful for biomedical applications.


2021 ◽  
Vol 21 (12) ◽  
pp. 6111-6119
Author(s):  
Van Manh Nguyen ◽  
Trinh Tung Ngo ◽  
Thi Thu Trang Bui ◽  
Thi Thanh Hop Tran ◽  
The Huu Nguyen ◽  
...  

In this work, we have synthesized a nanocomposite ZnS/CdS/Pt/TiO2 nanotube arrays (denoted ZCP-NTAs). Firstly, TiO2 nanotube array (NTAs) material was fabricated by the anodic method of a titanium plate in an electrolyte solution containing 0.35 M NaHSO4 and 0.24 M NaF and incubated in the air at 500 ºC for 2 hours. After that, pulsed electrodeposition technology was used to decorate platinum nanoparticles (denoted as Pt NPs) onto the surface of TiO2 nanotubes to form P-NTAs photoelectrodes. Then, the SILAR method is used to deposition CdS quantum dots (symbolized as CdS QDs) on the surface of P-NTAs to form CP-NTAs material. Finally, by the SILAR method, a ZnS passive layer that protects against optical corrosion and inhibits recombination of e−/h+ pairs was coated onto the CP-NTAs to form ZCP-NTAs material. As-prepared ZCP-NTAs photocatalytic material has good absorbability of light in the visible region with light absorption wavelength up to 608 nm, photon conversion efficiency up to 5.32% under light intensity AM1.5G, and decomposition efficiency of 10 mg L−1 methyl orange (MO) in 120 minutes reached 91.50%. This material promises to bring high application ability in the photocatalytic field applied for environmental treatment and other applications.


2021 ◽  
Vol 112 (1) ◽  
pp. 5-12
Author(s):  
M.D. Ilieva ◽  
N.V. Ferdinandov ◽  
D.D. Gospodinov ◽  
R.H. Radev

Purpose: The presented research aims to determine the microstructural changes in weldments of commercially pure titanium Grade 1 after welding by hollow cathode arc discharge in vacuum and related changes in the corrosion behaviour of the weldments. Design/methodology/approach: Macro and microstructure of weldments were studied using optical microscopy. Corrosion behaviour of untreated Grade 1 and heat-affected zone of weldments of Grade 1 was investigated using electrochemical testing, including open circuit potential measurements and potentiodynamic polarisation. As an aggressive environment, 1 M KBr water solution was used. Findings: Welding by hollow cathode arc discharge in vacuum leads to the formation of a coarse Widmanstätten structure in the heat-affected zone. This imperfect structure results in a passive layer with worsened protective properties, thus increasing the corrosion rate of weldments by up to two orders of magnitude compared to Grade 1 in as-received condition. The passive layer on the welded surfaces did not allow Grade 1 to acquire a stable corrosion potential during potenitodynamic polarization. Research limitations/implications: Titanium and its alloys are passivating metallic materials, and their corrosion resistance depends on the properties of a thin protective surface layer. Changes in the underlying metal microstructure can affect the passivation behaviour of titanium and the properties of this layer. Welding by hollow cathode arc discharge in vacuum alters the microstructure of heat-affected zone, thereby causing Widmanstätten microstructure to form. As the passive layer over that microstructure has worsened protective properties, we suggest additional heat treatment after welding to be applied. Future experimental research on this topic is needed. Originality/value: Welding by hollow cathode arc discharge in vacuum is a welding method allowing weldments to be done in a clean environment and even in space. In the specialised literature, information on the structure and corrosion resistance of weldments of commercially pure titanium Grade 1 welded by hollow cathode arc discharge in vacuum is missing. The present research fills in a tiny part of this gap in our knowledge.


Coatings ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1257
Author(s):  
Mihaela Dinu ◽  
Anca Constantina Parau ◽  
Alina Vladescu ◽  
Adrian Emil Kiss ◽  
Iulian Pana ◽  
...  

Zr-based nitrides and oxynitrides were deposited by reactive cathodic arc evaporation in monolayer and double-layer structures with the aim of increasing the corrosion protection of 304L stainless steel (SS) in a biomedical aggressive environment. All coatings had a total thickness of 1.2 µm. Compared to the bare substrate, the surface roughness of the coated samples was higher, the presence of microdroplets being revealed by scanning electron micrography (SEM). The X-ray diffraction investigation of the ZrN phases revealed that the peaks shifted towards lower Bragg angles and the lattice constants increased as a result of Si and O2 inclusion in ZrN lattice, and of the ion bombardment characteristic of the cathodic arc method, augmented by the applied bias substrate. SS/ZrSiN/ZrSi(N,O) showed the best corrosion performance in an acidic environment (0.9% NaCl and 6% H2O2; pH = 4), which was ascribed to the blocking effect of the interfaces, which acted as a corrosion barrier for the electrolyte ingress. Moreover, the aforementioned bilayer had the highest amount of Si and O in the composition of the top layer, forming a stable passive layer with beneficial effects on corrosion protection.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 5934
Author(s):  
Madalina Simona Baltatu ◽  
Petrica Vizureanu ◽  
Andrei Victor Sandu ◽  
Nestor Florido-Suarez ◽  
Mircea Vicentiu Saceleanu ◽  
...  

Titanium alloys are used in medical devices due to their mechanical properties, but also for their corrosion resistance. The natural passivation of titanium-based biomaterials, on the surface of which a dense and coherent film of nanometric thickness is formed, composed mainly of TiO2, determines an apparent bioactivity of them. In this paper, the method of obtaining new Ti20MoxSi alloys (x = 0.0, 0.5, 0.75, and 1.0) is presented, their microstructure is analyzed, and their electrochemical responses in Ringer´s solution were systematically investigated by linear polarization, cyclic potential dynamic polarization, and electrochemical impedance spectroscopy (EIS). The alloys corrosion resistance is high, and no evidence of localized breakdown of the passive layer was observed. There is no regularity determined by the composition of the alloys, in terms of corrosion resistance, but it seems that the most resistant is Ti20Mo1.0Si.


Sign in / Sign up

Export Citation Format

Share Document