scholarly journals Actor 3D reconstruction by a scene-based, visual hull guided, multi-stereovision framework

Author(s):  
Muhannad Ismael ◽  
Raissel Ramirez Orozco ◽  
Céline Loscos ◽  
Stephane Prevost ◽  
Yannick Remion
Author(s):  
D. E. Guccione ◽  
K. Thoeni ◽  
A. Giacomini ◽  
O. Buzzi ◽  
S. Fityus

Abstract. This paper presents a new methodology to accurately obtain 3D rotational velocities of blocks and fragments. Four high speed cameras are used to capture the scene. An additional two tilted mirrors are used to multiply the number of views. Hence, a total of six different viewing perspectives can be used to track translational and rotational velocities in 3D. The focus in the current work is on the rotational velocities, as tracking of the translation is generally straightforward. A common outline tracking algorithm based on the visual hull is adapted. The visual hull is further meshed using triangular elements to approximate the shape of the object. This 3D reconstruction is then used to track the 3D motion of the object. However, the accuracy of the results strongly depends on the accuracy of the 3D reconstruction which is mainly influenced by the number and position of the available views. In any case, the 3D reconstruction from the visual hull is only an approximation and significant errors can be introduced which influence the tracking accuracy. Hence, an in-house post-processing algorithm based on the knowledge of the real geometry of the object, which can generally be accurately determined after a test, was developed. The improved performance of this new post-processing method is shown by controlled spinning tests. Finally, results of a real example of an impact fragmentation test are discussed.


Author(s):  
Jose-Maria Carazo ◽  
I. Benavides ◽  
S. Marco ◽  
J.L. Carrascosa ◽  
E.L. Zapata

Obtaining the three-dimensional (3D) structure of negatively stained biological specimens at a resolution of, typically, 2 - 4 nm is becoming a relatively common practice in an increasing number of laboratories. A combination of new conceptual approaches, new software tools, and faster computers have made this situation possible. However, all these 3D reconstruction processes are quite computer intensive, and the middle term future is full of suggestions entailing an even greater need of computing power. Up to now all published 3D reconstructions in this field have been performed on conventional (sequential) computers, but it is a fact that new parallel computer architectures represent the potential of order-of-magnitude increases in computing power and should, therefore, be considered for their possible application in the most computing intensive tasks.We have studied both shared-memory-based computer architectures, like the BBN Butterfly, and local-memory-based architectures, mainly hypercubes implemented on transputers, where we have used the algorithmic mapping method proposed by Zapata el at. In this work we have developed the basic software tools needed to obtain a 3D reconstruction from non-crystalline specimens (“single particles”) using the so-called Random Conical Tilt Series Method. We start from a pair of images presenting the same field, first tilted (by ≃55°) and then untilted. It is then assumed that we can supply the system with the image of the particle we are looking for (ideally, a 2D average from a previous study) and with a matrix describing the geometrical relationships between the tilted and untilted fields (this step is now accomplished by interactively marking a few pairs of corresponding features in the two fields). From here on the 3D reconstruction process may be run automatically.


Author(s):  
Adriana Verschoor ◽  
Ronald Milligan ◽  
Suman Srivastava ◽  
Joachim Frank

We have studied the eukaryotic ribosome from two vertebrate species (rabbit reticulocyte and chick embryo ribosomes) in several different electron microscopic preparations (Fig. 1a-d), and we have applied image processing methods to two of the types of images. Reticulocyte ribosomes were examined in both negative stain (0.5% uranyl acetate, in a double-carbon preparation) and frozen hydrated preparation as single-particle specimens. In addition, chick embryo ribosomes in tetrameric and crystalline assemblies in frozen hydrated preparation have been examined. 2D averaging, multivariate statistical analysis, and classification methods have been applied to the negatively stained single-particle micrographs and the frozen hydrated tetramer micrographs to obtain statistically well defined projection images of the ribosome (Fig. 2a,c). 3D reconstruction methods, the random conical reconstruction scheme and weighted back projection, were applied to the negative-stain data, and several closely related reconstructions were obtained. The principal 3D reconstruction (Fig. 2b), which has a resolution of 3.7 nm according to the differential phase residual criterion, can be compared to the images of individual ribosomes in a 2D tetramer average (Fig. 2c) at a similar resolution, and a good agreement of the general morphology and of many of the characteristic features is seen.Both data sets show the ribosome in roughly the same ’view’ or orientation, with respect to the adsorptive surface in the electron microscopic preparation, as judged by the agreement in both the projected form and the distribution of characteristic density features. The negative-stain reconstruction reveals details of the ribosome morphology; the 2D frozen-hydrated average provides projection information on the native mass-density distribution within the structure. The 40S subunit appears to have an elongate core of higher density, while the 60S subunit shows a more complex pattern of dense features, comprising a rather globular core, locally extending close to the particle surface.


Sign in / Sign up

Export Citation Format

Share Document