scholarly journals New version of generalized Ostrowski-Gruss type inequality

2021 ◽  
Vol 66 (3) ◽  
pp. 441-455
Author(s):  
Muhammad Bilal ◽  
Nazia Irshad ◽  
Asif R. Khan

"Ostrowski inequality is one of the celebrated inequalities in Mathematics. The main purpose of our study is to generalize the result of Ostrowski-Gruss type inequality for first differentiable mappings and apply it to probability density functions, composite quadrature rules and special means."

2014 ◽  
Vol 90 (2) ◽  
pp. 264-274
Author(s):  
DAH-YAN HWANG ◽  
SILVESTRU SEVER DRAGOMIR

AbstractSome better estimates for the difference between the integral mean of a function and its mean over a subinterval are established. Various applications for special means and probability density functions are also given.


Filomat ◽  
2015 ◽  
Vol 29 (8) ◽  
pp. 1695-1713 ◽  
Author(s):  
Mehmet Kiris ◽  
Mehmet Sarikaya

In this paper, we obtain some new Ostrowski type inequalities and Cebysev type inequalities for functions whose second derivatives absolute value are convex and second derivatives belongs to Lp spaces. Applications to a composite quadrature rule, to probability density functions, and to special means are also given.


2021 ◽  
Vol 13 (12) ◽  
pp. 2307
Author(s):  
J. Javier Gorgoso-Varela ◽  
Rafael Alonso Ponce ◽  
Francisco Rodríguez-Puerta

The diameter distributions of trees in 50 temporary sample plots (TSPs) established in Pinus halepensis Mill. stands were recovered from LiDAR metrics by using six probability density functions (PDFs): the Weibull (2P and 3P), Johnson’s SB, beta, generalized beta and gamma-2P functions. The parameters were recovered from the first and the second moments of the distributions (mean and variance, respectively) by using parameter recovery models (PRM). Linear models were used to predict both moments from LiDAR data. In recovering the functions, the location parameters of the distributions were predetermined as the minimum diameter inventoried, and scale parameters were established as the maximum diameters predicted from LiDAR metrics. The Kolmogorov–Smirnov (KS) statistic (Dn), number of acceptances by the KS test, the Cramér von Misses (W2) statistic, bias and mean square error (MSE) were used to evaluate the goodness of fits. The fits for the six recovered functions were compared with the fits to all measured data from 58 TSPs (LiDAR metrics could only be extracted from 50 of the plots). In the fitting phase, the location parameters were fixed at a suitable value determined according to the forestry literature (0.75·dmin). The linear models used to recover the two moments of the distributions and the maximum diameters determined from LiDAR data were accurate, with R2 values of 0.750, 0.724 and 0.873 for dg, dmed and dmax. Reasonable results were obtained with all six recovered functions. The goodness-of-fit statistics indicated that the beta function was the most accurate, followed by the generalized beta function. The Weibull-3P function provided the poorest fits and the Weibull-2P and Johnson’s SB also yielded poor fits to the data.


2021 ◽  
Vol 502 (2) ◽  
pp. 1768-1784
Author(s):  
Yue Hu ◽  
A Lazarian

ABSTRACT The velocity gradients technique (VGT) and the probability density functions (PDFs) of mass density are tools to study turbulence, magnetic fields, and self-gravity in molecular clouds. However, self-absorption can significantly make the observed intensity different from the column density structures. In this work, we study the effects of self-absorption on the VGT and the intensity PDFs utilizing three synthetic emission lines of CO isotopologues 12CO (1–0), 13CO (1–0), and C18O (1–0). We confirm that the performance of VGT is insensitive to the radiative transfer effect. We numerically show the possibility of constructing 3D magnetic fields tomography through VGT. We find that the intensity PDFs change their shape from the pure lognormal to a distribution that exhibits a power-law tail depending on the optical depth for supersonic turbulence. We conclude the change of CO isotopologues’ intensity PDFs can be independent of self-gravity, which makes the intensity PDFs less reliable in identifying gravitational collapsing regions. We compute the intensity PDFs for a star-forming region NGC 1333 and find the change of intensity PDFs in observation agrees with our numerical results. The synergy of VGT and the column density PDFs confirms that the self-gravitating gas occupies a large volume in NGC 1333.


2015 ◽  
Vol 34 (6) ◽  
pp. 1-13 ◽  
Author(s):  
Minh Dang ◽  
Stefan Lienhard ◽  
Duygu Ceylan ◽  
Boris Neubert ◽  
Peter Wonka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document