scholarly journals Birds of the Murray river region between Mildura and Renmark, Australia

1973 ◽  
Vol 34 ◽  
pp. 253-273
Author(s):  
K. N. G. Simpson
Keyword(s):  
2010 ◽  
Vol 45 (5) ◽  
pp. 896-911 ◽  
Author(s):  
Xuan Zhu ◽  
Sharron Pfueller ◽  
Paul Whitelaw ◽  
Caroline Winter

2019 ◽  
Vol 70 (11) ◽  
pp. 1522 ◽  
Author(s):  
F. T. Watson ◽  
R. J. Smernik ◽  
A. L. Doolette ◽  
L. M. Mosley

Phosphorus (P) availability, which depends on both P concentration and speciation, often controls primary productivity and algal-bloom formation in river systems. The river P pool is also connected to P pools of adjacent sediments, soils and vegetation. Thus, informed management of P in floodplain–river systems requires detailed understanding of P concentration and speciation in all of these interconnected components. We studied P speciation in river sediments and water, floodplain soils and river red gum (Eucalyptus camaldulensis) leaf litter from the Lower Murray region using conventional spectroscopic measurements, solution 31P nuclear magnetic resonance (31P NMR) spectroscopy, and leaching experiments to simulate floodplain re-wetting of leaf litter. Almost all (>85%) of the P in river sediments was in the orthophosphate form, whereas floodplain soils had higher proportions of organic P (PO) species. Both fresh and senescent river red gum leaf litter also had a much higher concentration of PO, primarily in the form of phytate. On submersion, there was a rapid (0–96h) loss of dissolved P from senescent leaves; release of dissolved organic carbon showed similar kinetics. Loss of P from the leaves included both organic and inorganic forms. The results have important implications for aquatic primary productivity and environmental management strategies.


2021 ◽  
Author(s):  
Luke Mosley ◽  
Diederik Jacques ◽  
Joel Rahman

<p>Under changing climate conditions with expected higher risks on long periods of severe drought events, acid sulfate soils have a higher risk for acidification when exposed to oxygen under a falling water table. A regional or continental risk map for acidification under possible future climate scenarios is one of the tools for evaluating agricultural, economic and environmental impacts of acidification. The starting point is a simulation model with the relevant processes accounting for (i) the effect of changing meteorological boundary conditions on the water dynamics inside the soil and the ground water depth, (ii) diffusion of oxygen inside the soil profile, and (iii) kinetic dissolution of pyrite and geochemical alterations. The simulation tool HPx (Jacques et al., 2018) couples all these processes and enables to evaluation of different model structures. Numerical results were compared to an extreme drought event in the lower Murray River region, Murray-Darling Basin South Australia, between 2007 and 2010. A second step was the implementation of the mechanistic model in a spatial framework using python. As a proof of principle, we started with 5 x 5 km grid in areas with high probability of acid sulfate soils. Soil spatial data was pre-processed to determine model hydraulic parameters using pedotransfer functions. Climate and soil data were defined for each grid cell and formatted at run time for input into HPx. HPx simulations are controlled for the specific data for each grid cell. The final step is to perform the simulations on large spatial and temporal scales using supercomputing for which a linux-version of HP1 was developed. These developments open up new opportunities for coupled soil-climate modelling.</p> <p>Jacques, D., Simunek, J., Mallants, D. and van Genuchten, M.T. (2018). JOURNAL OF HYDROLOGY AND HYDROMECHANICS 66, 211-226</p>


Sign in / Sign up

Export Citation Format

Share Document