Regional risk assessment of acid sulfate soil acidification under climate change based on mechanistic modelling of pyrite oxidation during prolonged drought events

2021 ◽  
Author(s):  
Luke Mosley ◽  
Diederik Jacques ◽  
Joel Rahman

<p>Under changing climate conditions with expected higher risks on long periods of severe drought events, acid sulfate soils have a higher risk for acidification when exposed to oxygen under a falling water table. A regional or continental risk map for acidification under possible future climate scenarios is one of the tools for evaluating agricultural, economic and environmental impacts of acidification. The starting point is a simulation model with the relevant processes accounting for (i) the effect of changing meteorological boundary conditions on the water dynamics inside the soil and the ground water depth, (ii) diffusion of oxygen inside the soil profile, and (iii) kinetic dissolution of pyrite and geochemical alterations. The simulation tool HPx (Jacques et al., 2018) couples all these processes and enables to evaluation of different model structures. Numerical results were compared to an extreme drought event in the lower Murray River region, Murray-Darling Basin South Australia, between 2007 and 2010. A second step was the implementation of the mechanistic model in a spatial framework using python. As a proof of principle, we started with 5 x 5 km grid in areas with high probability of acid sulfate soils. Soil spatial data was pre-processed to determine model hydraulic parameters using pedotransfer functions. Climate and soil data were defined for each grid cell and formatted at run time for input into HPx. HPx simulations are controlled for the specific data for each grid cell. The final step is to perform the simulations on large spatial and temporal scales using supercomputing for which a linux-version of HP1 was developed. These developments open up new opportunities for coupled soil-climate modelling.</p> <p>Jacques, D., Simunek, J., Mallants, D. and van Genuchten, M.T. (2018). JOURNAL OF HYDROLOGY AND HYDROMECHANICS 66, 211-226</p>

Geoderma ◽  
2017 ◽  
Vol 308 ◽  
pp. 312-320 ◽  
Author(s):  
L.M. Mosley ◽  
T.K. Biswas ◽  
F.J. Cook ◽  
P. Marschner ◽  
D. Palmer ◽  
...  

2009 ◽  
Vol 4 (1) ◽  
pp. 125
Author(s):  
Akhmad Mustafa ◽  
Rachmansyah Rachmansyah ◽  
Dody Dharmawan Trijuno ◽  
Ruslaini Ruslaini

Rumput laut (Gracilaria verrucosa) telah dibudidayakan di tambak tanah sulfat masam dengan kualitas dan kuantitas produksi yang relatif tinggi. Oleh karena itu, dilakukan penelitian yang bertujuan untuk mengetahui peubah kualitas air yang mempengaruhi laju pertumbuhan rumput laut di tambak tanah sulfat masam Kecamatan Angkona Kabupaten Luwu Timur Provinsi Sulawesi Selatan. Pemeliharaan rumput laut dilakukan di 30 petak tambak  terpilih selama 6 minggu. Bibit rumput laut dengan bobot 100 g basah ditebar dalam hapa berukuran 1,0 m x 1,0 m x 1,2 m. Peubah tidak bebas yang diamati adalah laju pertumbuhan relatif, sedangkan peubah bebas adalah peubah kualitas air yang meliputi: intensitas cahaya, salinitas, suhu, pH, karbondioksida, nitrat, amonium, fosfat, dan besi. Analisis regresi berganda digunakan untuk menentukan peubah bebas yang dapat digunakan untuk memprediksi peubah tidak bebas. Hasil penelitian menunjukkan bahwa laju pertumbuhan relatif rumput laut di tambak tanah sulfat masam berkisar antara 1,52% dan 3,63%/hari dengan rata-rata 2,88% ± 0,56%/hari. Di antara 9 peubah kualitas air yang diamati ternyata hanya 5 peubah kualitas air yaitu: nitrat, salinitas, amonium, besi, dan fosfat yang mempengaruhi pertumbuhan rumput laut secara nyata. Untuk meningkatkan pertumbuhan rumput laut di tambak tanah sulfat masam Kecamatan Angkona Kabupaten Luwu Timur dapat dilakukan dengan pemberian pupuk yang mengandung nitrogen untuk meningkatkan kandungan amonium dan nitrat serta pemberian pupuk yang mengandung fosfor untuk meningkatkan kandungan fosfat sampai pada nilai tertentu, melakukan remediasi untuk menurunkan kandungan besi serta memelihara rumput laut pada salinitas air yang lebih tinggi, tetapi tidak melebihi 30 ppt.Seaweed (Gracilaria verrucosa) has been cultivated in acid sulfate soil-affected ponds with relatively high quality and quantity of seaweed production. A research has been conducted to study water quality variables that influence the growth of seaweed in acid sulfate soil-affected ponds of Angkona Sub-district East Luwu Regency South Sulawesi Province. Cultivation of seaweed was done for six weeks in 30 selected brackishwater ponds. Seeds of seaweed with weight of 100 g were stocked in hapa sized 1.0 m x 1.0 m x 1.2 m. Dependent variable that was observed was specific growth rate, whereas independent variables were water quality variables including light intensity, salinity, temperature, pH, carbondioxide, nitrate, ammonium, phosphate, and iron. Analyses of multiple regressions were used to determine the independent variables which could be used to predict the dependent variable. Research result indicated that relative growth rate of seaweed in acid sulfate soils-affected brackishwater ponds ranged from 1.52% to 3.63%/day with 2.88% ± 0.56%/day in average. Among nine observed water quality variables, only five variables namely: nitrate, salinity, ammonium, phosphate and iron influence significantly on the growth of seaweed in acid sulfate soils-affected brackishwater ponds. The growth of seaweed in acid sulfate soils-affected brackishwater ponds of Angkona District East Luwu Regency, can be improved by using nitrogen-based fertilizers to increase ammonium and nitrate contents and also fertilizers which contain phosphorus to improve phosphate content to a certain level. Pond remediation to decrease iron content and also rearing seaweed at higher salinity (but less than 30 ppt) can also be alternatives to increase the growth of seaweed.


2021 ◽  
Vol 9 (7) ◽  
pp. 1441
Author(s):  
Van Bach Lam ◽  
Thibault Meyer ◽  
Anthony Arguelles Arias ◽  
Marc Ongena ◽  
Feyisara Eyiwumi Oni ◽  
...  

Rice monoculture in acid sulfate soils (ASSs) is affected by a wide range of abiotic and biotic constraints, including rice blast caused by Pyricularia oryzae. To progress towards a more sustainable agriculture, our research aimed to screen the biocontrol potential of indigenous Bacillus spp. against blast disease by triggering induced systemic resistance (ISR) via root application and direct antagonism. Strains belonging to the B. altitudinis and B. velezensis group could protect rice against blast disease by ISR. UPLC–MS and marker gene replacement methods were used to detect cyclic lipopeptide (CLiP) production and construct CLiPs deficient mutants of B. velezensis, respectively. Here we show that the CLiPs fengycin and iturin are both needed to elicit ISR against rice blast in potting soil and ASS conditions. The CLiPs surfactin, iturin and fengycin completely suppressed P. oryzae spore germination resulting in disease severity reduction when co-applied on rice leaves. In vitro microscopic assays revealed that iturin and fengycin inhibited the mycelial growth of the fungus P. oryzae, while surfactin had no effect. The capacity of indigenous Bacillus spp. to reduce rice blast by direct and indirect antagonism in ASS conditions provides an opportunity to explore their usage for rice blast control in the field.


1988 ◽  
Vol 68 (3) ◽  
pp. 577-592
Author(s):  
C. R. DE KIMPE ◽  
M. R. LAVERDIERE ◽  
R. W. BARIL

Acid sulfate soils were sampled according to the transect method in four bays along the south shore of the St. Lawrence river to determine their properties in their area of distribution. In each bay, six profiles of cultivated soils were sampled along a transect perpendicular to the river. One non-cultivated profile was also sampled at l'Isle-Verte. The lower limit of the B horizons, between 79 and 89 cm, suggested a homogeneous development of these soils across the area. Most profiles contained jarosite in the lower Bg and, sometimes, in the C horizons; this mineral was absent in the upper part of the profiles of soils that had been limed prior to cultivation. Total S content increased with depth, but only a few horizons had a content > 0.75% presumably because of sulfate leaching once the soils were drained. Organic C content in the de l'Anse soils decreased less rapidly with depth than in other gleysolic soils, because vegetation grew while sediments were being deposited. Key words: Acid sulfate soils, total S, recent marine sediments, jarosite


Sign in / Sign up

Export Citation Format

Share Document