floodplain soils
Recently Published Documents


TOTAL DOCUMENTS

230
(FIVE YEARS 59)

H-INDEX

34
(FIVE YEARS 4)

2022 ◽  
Vol 12 (2) ◽  
pp. 595
Author(s):  
Collin J. Weber ◽  
Jens Hahn ◽  
Christian Opp

Soils contain an increasing number of different pollutants, which are often released into the environment by human activity. Among the “new” potential pollutants are plastics and microplastics. “Recognized” pollutants such as heavy metals, of geogenic and anthropogenic origin, now meet purely anthropogenic contaminants such as plastic particles. Those can meet especially in floodplain landscapes and floodplain soils, because of their function as a temporary sink for sediments, nutrients, and pollutants. Based on a geospatial sampling approach, we analyzed the soil properties and heavy metal contents (ICP-MS) in soil material and macroplastic particles, and calculated total plastic concentrations (Ptot) from preliminary studies. Those data were used to investigate spatial connections between both groups of pollutants. Our results from the example of the Lahn river catchment show a low-to-moderate contamination of the floodplain soils with heavy metals and a wide distribution of plastic contents up to a depth of two meters. Furthermore, we were able to document heavy metal contents in macroplastic particles. Spatial and statistical correlations between both pollutants were found. Those correlations are mainly expressed by a comparable variability in concentrations across the catchment and in a common accumulation in topsoil and upper soil or sediment layers (0–50 cm). The results indicate comparable deposition conditions of both pollutants in the floodplain system.


2021 ◽  
Vol 14 (1) ◽  
pp. 167
Author(s):  
Mamunur Rahman ◽  
Mohammad Mofizur Rahman Jahangir ◽  
Mohammad Golam Kibria ◽  
Mahmud Hossain ◽  
Md Hosenuzzaman ◽  
...  

The critical limit for zinc (Zn) varies from 0.38 to 2 µg/g soil depending on the crop and soil type. However, the critical limit for Zn was not explored recently for rice and potato cultivation in the floodplain soils of Bangladesh. A pot experiment was conducted to determine the critical limits of Zn in soil and plants for rice and potato cultivation in two agro-ecological zones (AEZs) of Bangladesh. The soil samples were collected from 20 different locations of Old Brahmaputra and Active Ganges Floodplains with low (<0.9 µg/g), medium (0.91–1.80 µg/g) and high (>1.80 µg/g) Zn status. The experiment was laid out in a factorial and completely randomized design with two levels of Zn (Zn0 and Zn1 (0 and 4.87 kg/ha as Zn sulphate)) applied to 20 different soil samples for rice and potato cultivation using three replications. The critical limit of Zn was determined through a graphical and statistical approach and crops were harvested at the stem elongation (for rice) and tuber filling (for potato) stage. The critical limit of Zn in soil for rice was found to be 0.8 and 0.85 µg/g by graphical and statistical methods, respectively, and both methods revealed the same value (0.73 µg/g) for potato. The critical limit of Zn in rice plants was 23.9 and 24.32 µg/g, whereas in potato plants it was 27.1 and 26.61 µg/g, determined by graphical and statistical methods, respectively. The added Zn supply in soil significantly increased the dry matter accumulation in rice (by 5.6%) and potato (by 10%) compared to no Zn supply. Therefore, a significant positive response to added Zn could be observed on crop growth and yield when the Zn concentration remained below the mentioned critical level for rice and potato cultivation in floodplain soils of Bangladesh.


Author(s):  
Louisa F. Steingräber ◽  
Catharina Ludolphy ◽  
Johannes Metz ◽  
Lars Germershausen ◽  
Horst Kierdorf ◽  
...  

AbstractWe studied heavy metal levels in floodplain soils of the Innerste River in northern Germany and in the leaves of wild blackberries (Rubus fruticosus L. agg.) growing within and in adjacent areas outside the river floodplain. Heavy metal contamination of the Innerste floodplain is a legacy of historical metal ore mining, processing, and smelting in the Harz Mountains. The heavy metal (Cd, Pb, Zn, Cu, Ni, and Cr) contents of previously studied soil samples from eleven floodplain sites along the Innerste River were re-analyzed statistically, and the levels of these metals in blackberry leaves were determined at five sites. Mean concentrations in the floodplain soils were elevated by factors of 4.59 to 28.5 for Cd, 13.03 to 158.21 for Pb, 5.66 to 45.83 for Zn, and 1.1–14.81 for Cu relative to the precautionary limits for soils stipulated by the German Federal Soil Protection and Contaminated Sites Ordinance. Cadmium, Pb, Zn, Cu, and Ni levels in floodplain soils decreased markedly downstream, as did the concentrations of Cd, Zn, and Ni in the leaves of blackberries from within the floodplain. Levels of Cd, Pb, and Zn in leaves of blackberries from within the floodplain significantly exceeded those of specimens from outside the floodplain. The findings of our study highlight the potential of wild blackberry as a biomonitor of soil pollution by Cd, Pb, and Zn and corroborate the massive heavy metal contamination of floodplain soils along the Innerste River observed in previous studies.


Author(s):  
C.J. Weber ◽  
C. Opp ◽  
J.A. Prume ◽  
M. Koch ◽  
T.J. Andersen ◽  
...  
Keyword(s):  

2021 ◽  
pp. 5-30
Author(s):  
N. V. Savitskaya ◽  
T. V. Ananko ◽  
M. I. Gerasimova

The development of the digital model of the soil map of Russia derived of the map of the Soviet Russian Federation, 1988, compiled in Dokuchaev Soil Science Institute, comprises the transfer of soil names in the initial legend to those in the new classification system of Russian soils (2004). Floodplain soils (only native) are represented by seven legend units (out of 205) that were named in terms of soil classification of USSR, 1977, and part of their names indicated ‘landscapes’ rather than soils, which disagrees with the principles of the new classification system. Basing on numerous publications and following the rules of the new system, soils were renamed. Most of them were referred to alluvial soil types within the synlithogenic trunk (Fluvisols), and their new names indicate both their properties and their zonal attachment. In order to obtain more adequate patterns of soils in river valleys additional soils were introduced including stratified-alluvial soils in the trunk of primary pedogenesis (Regosols). Simultaneously, the composition of polygons in the database was revised in accordance with regional data; human-modified soils were introduced (agro-soils and urbo-soils). 


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mary R. Arenberg ◽  
Yuji Arai

AbstractAs an essential component of enzymes, higher N availability from agricultural runoff to forest soils may boost the activity of phosphatase, increasing the bioavailability of phosphate. The objective of this study was to evaluate P mineralization rates in temperate floodplain soils as a function of inorganic N species (i.e., ammonium and nitrate) and amendment rate (1.5–3.5 g N kg−1). Accordingly, the soil was amended with nitrate and ammonium, and P dynamics were monitored during a 40-day incubation. The addition of ammonium significantly boosted acid and alkaline phosphatase activity by 1.39 and 1.44 µmol p-nitrophenol P (pNP) g−1 h−1, respectively. The degree of increase was positively correlated with the amendment rate. Likewise, the P mineralization rate increased by 0.27 mg P kg−1 in the 3.5 g N kg−1 ammonium treatment. 31P nuclear magnetic resonance spectroscopic analysis further supported the reduction in organic orthophosphate diesters on day 30. Meanwhile, the addition of nitrate promoted P mineralization to a lesser degree but did not increase phosphatase activity. While floodplain soils have great potential to sequester anthropogenic P, high availability of inorganic N, especially ammonium, could promote P mineralization, potentially increasing P fertility and/or reducing P the sequestration capacity of floodplain soils.


Sign in / Sign up

Export Citation Format

Share Document