scholarly journals The Effect of Annealing Time on TiO2–Based Dye Sensitized Solar Cell: Natural Pigment

2018 ◽  
Vol 6 (6) ◽  
Author(s):  
Hafeez Yusuf Hafeez ◽  
Bala Ismail Adam

In this analytical approach we fabricate and characterized a Titanium Dioxide Dye sensitized solar cell using Doctor-Blade Technique. The samples were given annealing treatment at various time of 20, 30 and 40 minutes respectivelyat constant annealing temperature of 450oC. The device under test (DUT) were tested using a Kiethley 2400, source meter under A.M 1.5 (1000W/m2) illumination from a Newport class A solar simulator.The results shows that at the miscellaneous annealing time, the open circuit voltagesVoc= 0.28V, 0.30V and 0.29V, the short circuit current density Jsc=95.5µAcm-2 , 104.1µAcm-2and 105µAcm-2, the fill factor FF= 0.411, 0.448 and 0.525 and the energy conversion efficiency, η = 0.011, 0.014 and 0.016 respectively.With best results of open circuit voltage Voc=0.30, short circuit current density Jsc= 105mAcm-2, fill factor FF= 0.525 and energy conversion efficiency η= 0.016 was achieved.It was observed that the power density, Fill Factor and efficiency increases with increasewith increase in annealing time.

2013 ◽  
Vol 771 ◽  
pp. 159-168 ◽  
Author(s):  
I. Jinchu ◽  
A. Bharatkumar Sharma ◽  
C.O. Sreekala ◽  
K.S. Sreelatha ◽  
K. Achuthan

The efficiency of the best Dye sensitized solar cell is primarily depends on the good light harvesting property of the photo anode. Present study uses Lawsone (2 hydroxy [1, -naphthoquinone), the natural dye and compare the performance of photo anode in bare TiO2 and with nanoporous CaCO3 coated TiO2. As compared to bare TiO2, the surface area of nanoporous CaCO3-coated TiO2 increases, consequently, a better amount of dye adsorption occurs. The coating of CaCO3 increases the impedance at TiO2/dye/electrolyte interface and affect lifetime of the photoelectrons. Due to this reasons the short circuit current Jsc, open-circuit voltage (Voc), and fill factor (FF) increases. Thereby, the energy conversion efficiency of the solar cell is improved.


2011 ◽  
Vol 415-417 ◽  
pp. 1586-1589
Author(s):  
Yu Hua Dai ◽  
Xiao Lei Sun ◽  
Jing Lian Wang ◽  
Ming Shan Yang

A series of copolymers P(VP-HEMA) composed of hydroxyl ethyl methacrylate (HEMA) and 4-vinyl pyridine (VP) were prepared by a solution copolymerization technique. Based on the copolymer P(VP-HEMA) prepared by the content of VP 50%, the amount of AIBN 3% and the optimized liquid electrolyte, a polymer solution electrolyte with concentration of 9.0% was formed. By addition of 1,4-dibromobutane into the solution, the copolymer gel electrolyte with higher conductivity 6.14mS/cm was prepared. Gelation is caused by the quaterisation between the group of pyridine in P(HEMA-VP) and 1,4-dibromobutane. Based on the copolymer gel electrolyte, a dye-sensitized solar cell was fabricated with short-circuit current of 13.62mA/cm2,open circuit voltage of 0.72V, fill factor of 0.5465 and an overall conversion efficiency of 5.24% under irradiation 100mW/cm2(AM1.5).


2018 ◽  
Vol 35 (4) ◽  
pp. 816-823 ◽  
Author(s):  
M. Khalid Hossain ◽  
M.F. Pervez ◽  
S. Tayyaba ◽  
M. Jalal Uddin ◽  
A.A. Mortuza ◽  
...  

Abstract Efficiency of dye-sensitized solar cell (DSSC) depends on several interrelated factors such as type and concentration of dye, type and thickness of photoelectrode and counter electrode. Optimized combination of these factors leads to a more efficient cell. This paper presents the effect of these parameters on cell efficiency. TiO2 nanoporous thin films of different thicknesses (5 μm to 25 μm) were fabricated on indium doped tin oxide (ITO) coated glass by doctor blading method and characterized by inverted microscope, stylus surface profiler and scanning electron microscope (SEM). Natural organic dye of different concentrations, extracted from turmeric, was prepared with ethanol solvent. Different combinations of dye concentrations and film thicknesses along with different types of carbon catalyst have been investigated by I-V characterization. The result shows that the cell made of a counter electrode catalyst material prepared by candle flame carbon combined with about 15 μm thick photoelectrode and 100 mg/mL dye in ethanol solvent, achieves the highest efficiency of 0.45 %, with open circuit voltage of 566 mV and short circuit current density of 1.02 mA/cm2.


2010 ◽  
Vol 663-665 ◽  
pp. 857-860 ◽  
Author(s):  
Yan Xiang Wang ◽  
Ting Li Ma ◽  
Xue Yun Fan ◽  
Xiao Yan Li

In order to improve the performance of the dye-sensitized solar cells based on ZnO films, ZnO nanoparticles of different size and morphology were prepared by hydrothermal and solvothermal synthesis methods. Electrodes applied to dye-sensitized solar cell were prepared by the screen-printing method. The effects of ZnO nanoparticles of different size and morphology on the photovoltaic characteristics of dye-sensitized ZnO solar cells were investigated. The results show that: The short-circuit current density and the energy conversion efficiency of the ZnO nanosheets DSSC are 0.13 mA/cm2 and 0.02%. The short-circuit current density and the energy conversion efficiency of cells prepared with ZnO nanorods with diameter 500nm and length 5μm are 1.91 mA/cm2 and 0.03%.The best performance achieved in the present work was a conversion efficiency of 3.46% for the cells prepared with ZnO nanoparticles with diameters 80nm.


2005 ◽  
Vol 12 (01) ◽  
pp. 19-25 ◽  
Author(s):  
M. RUSOP ◽  
M. ADACHI ◽  
T. SOGA ◽  
T. JIMBO

Phosphorus-doped amorphous carbon (n-C:P) films were grown by r. f.-power-assisted plasma-enhanced chemical vapor deposition at room temperature using a novel solid red phosphorus target. The influence of phosphorus doping on material properties of n-C:P based on the results of simultaneous characterization are reported. Moreover, the solar cell properties such as series resistance, short circuit current density, open circuit current voltage, fill factor and conversion efficiency along with the spectral response are reported for the fabricated carbon-based n-C:P/p-Si heterojunction solar cell that was measured by standard measurement technique. The cells performances have been given in the dark I–V rectifying curve and I–V working curve under illumination when exposed to AM 1.5 illumination condition (100 mW/cm 2, 25°C). The maximum of open-circuit voltage (V oc ) and short-circuit current density (J sc ) for the cells are observed to be approximately 236 V and 7.34, mAcm 2 respectively for the n-C:P/p-Si cell grown at lower r. f. power of 100 W. The highest energy conversion efficiency (η) and fill factor (FF) were found to be approximately 0.84% and 49%, respectively. We have observed that the rectifying nature of the heterojunction structures is due to the nature of n-C:P films.


2015 ◽  
Vol 793 ◽  
pp. 450-454 ◽  
Author(s):  
N. Gomesh ◽  
R. Syafinar ◽  
Muhamad Irwanto ◽  
Y.M. Irwan ◽  
M. Fareq ◽  
...  

Dye-sensitized solar cell (DSSC) consists of TiO2 nanoporous coating which acts as a photo electrode, a sensitizer of dye molecules soaked in the TiO2 film, liquid electrolyte and a counter electrode. This paper focuses on the usage of a sensitizer from the Pitaya fruit. Pitaya or commonly known as dragon fruit (Hylocereus polyrhizus) was extracted and used as a sensitizer to fabricate the dye sensitized solar cell (DSSC). The photoelectrochemical performance of Pitaya based solar cell shows an open circuit voltage (VOC) of 237 mV, short circuit current (ISC) of 4.98 mA, fill factor (FF) of 0.51, solar cell efficiency (η) of 0.70 % and has a peak absorbance rate of 2.7 at 550 nm. The photoelectrochemical and UV-Visible light absorbance performance of Pitaya-DSSC shows good potential in future solar cell fabrication.


2014 ◽  
Vol 1070-1072 ◽  
pp. 616-619
Author(s):  
Wen Bo Xiao ◽  
Jin Dai ◽  
Guo Hua Tu ◽  
Hua Ming Wu

The dye-sensitized solar cell performances influenced by radiant intensity and illuminated area in concentrating photovoltaic system are investigated experimentally and discussed theoretically. The results show that, under the same irradiated cells area, the short-circuit current is linearly increasing with the radiant intensity and the open-circuit voltage follows a logarithmic function of the radiant intensity. And, it is turned out that the short-circuit current and open-circuit voltage are obviously enhanced by increasing the illuminated cells surface area at the same radiant intensity. However, that growth trends will decline with an increase of the illuminated area. The reason is more defects involved in the process of increasing illumination area. All results can be interpreted using an equivalent circuit of a single diode model. A good agreement can be observed from the fitting curves. It is of great significance for current photovoltaic research.


2015 ◽  
Vol 761 ◽  
pp. 341-346 ◽  
Author(s):  
Ahmad Aizan Zulkefle ◽  
Maslan Zainon ◽  
Zaihasraf Zakaria ◽  
Mohd Ariff Mat Hanafiah ◽  
Nurul Huda Abdul Razak ◽  
...  

This paper presents the performance between silicon germanium (SiGe) and crystalline germanium (Ge) solar cells in terms of their simulated open circuit voltage, short circuit current density, fill factor and efficiency. The PC1D solar cell modeling software has been used to simulate and analyze the performance for both solar cells, and the total thickness is limited to 1μm of both SiGe and Ge solar cells. The Si0.1Ge0.9 thickness is varied from 10nm to 100nm to examine the effect of Si0.1Ge0.9 thickness on SiGe solar cell. The result of simulation exhibits the SiGe solar cell give a better performance compared to Ge solar cell. The efficiency of 9.74% (VOC = 0.48V, JSC = 27.86mA/cm2, FF =0.73) is achieved with Si0.1Ge0.9 layer of 0.1μm in thickness whilst 2.73% (VOC = 0.20V, JSC = 27.31mA/cm2, FF =0.50) efficiency is obtained from Ge solar cell.


2011 ◽  
Vol 347-353 ◽  
pp. 3666-3669
Author(s):  
Ming Biao Li ◽  
Li Bin Shi

The AMPS-ID program is used to investigate optical and electrical properties of the solar cell of a-SiC:H/a-Si1-xGex:H/a-Si:H thin films. The short circuit current density, open circuit voltage, fill factor and conversion efficiency of the solar cell are investigated. For x=0.1, the conversion efficiency of the solar cell achieve maximum 9.19 % at the a-Si1-xGex:H thickness of 340 nm.


2006 ◽  
Vol 4 (3) ◽  
pp. 476-488 ◽  
Author(s):  
Yoshikazu Suzuki ◽  
Supachai Ngamsinlapasathian ◽  
Ryuhei Yoshida ◽  
Susumu Yoshikawa

AbstractPartially nanowire-structured TiO2 was prepared by a hydrothermal processing followed by calcination in air. The hydrogen titanate powder as-synthesized was calcined at 300 °C for 4 h to obtain the partially nanowire-structured TiO2. A dye-sensitized solar cell (DSC) with a film thickness of 5.6 μm, fabricated using the partially nanowire-structured TiO2 showed better performance than using a fully nanowire-structured TiO2 or a conventional equi-axed TiO2 nanopowder. The short-circuit current density (JSC), the open-circuit voltage (VOC), the fill factor (FF) and the overall efficiency (η) are 11.9 mA/cm2, 0.754 V, 0.673 and 6.01 %, respectively. The effects of one-dimensional nanostructure and electron expressway concept are discussed.


Sign in / Sign up

Export Citation Format

Share Document