counter electrode
Recently Published Documents


TOTAL DOCUMENTS

2129
(FIVE YEARS 520)

H-INDEX

99
(FIVE YEARS 14)

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 481
Author(s):  
Jinyu Wu ◽  
Lei Zhang ◽  
Qiao Kang ◽  
Hongxi Shi ◽  
Long Li ◽  
...  

Carbon-based hole transport material (HTM)-free perovskite solar cells have exhibited a promising commercialization prospect, attributed to their outstanding stability and low manufacturing cost. However, the serious charge recombination at the interface of the carbon counter electrode and titanium dioxide (TiO2) suppresses the improvement in the carbon-based perovskite solar cells’ performance. Here, we propose a modified sequential deposition process in air, which introduces a mixed solvent to improve the morphology of lead iodide (PbI2) film. Combined with ethanol treatment, the preferred crystallization orientation of the PbI2 film is generated. This new deposition strategy can prepare a thick and compact methylammonium lead halide (MAPbI3) film under high-humidity conditions, which acts as a natural active layer that separates the carbon counter electrode and TiO2. Meanwhile, the modified sequential deposition method provides a simple way to facilitate the conversion of the ultrathick PbI2 capping layer to MAPbI3, as the light absorption layer. By adjusting the thickness of the MAPbI3 capping layer, we achieved a power conversation efficiency (PCE) of 12.5% for the carbon-based perovskite solar cells.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 558
Author(s):  
Erican Santiago ◽  
Shailu Shree Poudyal ◽  
Sung Y. Shin ◽  
Hyeun Joong Yoon

A graphene oxide (GO)-based cortisol biosensor was developed to accurately detect cortisol concentrations from sweat samples at point-of-care (POC) sites. A reference electrode, counter electrode, and working electrode make up the biosensor, and the working electrode was functionalized using multiple layers consisting of GO and antibodies, including Protein A, IgG, and anti-Cab. Sweat samples contact the anti-Cab antibodies to transport electrons to the electrode, resulting in an electrochemical current response. The sensor was tested at each additional functionalization layer and at cortisol concentrations between 0.1 and 150 ng/mL to determine how the current response differed. A potentiostat galvanostat device was used to measure and quantify the electrochemical response in the GO-based biosensor. In both tests, the electrochemical responses were reduced in magnitude with the addition of antibody layers and with increased cortisol concentrations. The proposed cortisol biosensor has increased accuracy with each additional functionalization layer, and the proposed device has the capability to accurately measure cortisol concentrations for diagnostic purposes.


Author(s):  
Yiming Chen ◽  
Shenghan Wu ◽  
Xiaohui Li ◽  
Meiyue Liu ◽  
Zeng Chen ◽  
...  

Carbon-based hole-transport-layer free perovskite solar cells (C-PSCs) have attracted much attention due to their low cost, simple preparation process and high stability. However, the efficiency of C-PSCs is far behind...


2022 ◽  
Vol 234 ◽  
pp. 111435
Author(s):  
Sun Hee Lee ◽  
Sang Jin Lee ◽  
Ryounghee Kim ◽  
Hyung-Won Kang ◽  
Intae Seo ◽  
...  

Solar Energy ◽  
2022 ◽  
Vol 231 ◽  
pp. 1048-1060
Author(s):  
Yin Huang ◽  
Hang Zhong ◽  
Wenbo Li ◽  
Duoling Cao ◽  
Ya Xu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document