scholarly journals Twisted Alexander polynomials for SL(2;C)-irreducible representations of torus knots

Author(s):  
Teruaki Kitano ◽  
Takayuki Morifuji
2013 ◽  
Vol 22 (01) ◽  
pp. 1250138 ◽  
Author(s):  
JIM HOSTE ◽  
PATRICK D. SHANAHAN

We investigate the twisted Alexander polynomial of a 2-bridge knot associated to a Fox coloring. For several families of 2-bridge knots, including but not limited to, torus knots and genus-one knots, we derive formulae for these twisted Alexander polynomials. We use these formulae to confirm a conjecture of Hirasawa and Murasugi for these knots.


2014 ◽  
Vol 23 (10) ◽  
pp. 1450051 ◽  
Author(s):  
Anh T. Tran

We calculate the twisted Alexander polynomial with the adjoint action for torus knots and twist knots. As consequences of these calculations, we obtain the formula for the nonabelian Reidemeister torsion of torus knots in [J. Dubois, Nonabelian twisted Reidemeister torsion for fibered knots, Canad. Math. Bull.49(1) (2006) 55–71] and a formula for the nonabelian Reidemeister torsion of twist knots that is better than the one in [J. Dubois, V. Huynh and Y. Yamaguchi, Nonabelian Reidemeister torsion for twist knots, J. Knot Theory Ramifications18(3) (2009) 303–341].


2003 ◽  
Vol 136 (2-3) ◽  
pp. 505-510 ◽  
Author(s):  
Mustafa Bayram ◽  
Hakan Şimşek ◽  
Necmettin Yıldırım

1993 ◽  
Vol 329 ◽  
Author(s):  
Frederick G. Anderson ◽  
H. Weidner ◽  
P. L. Summers ◽  
R. E. Peale ◽  
B. H. T. Chai

AbstractExpanding the crystal field in terms of operators that transform as the irreducible representations of the Td group leads to an intuitive interpretation of the crystal-field parameters. We apply this method to the crystal field experienced by Nd3+ dopants in the laser crystals YLiF4, YVO4, and KLiYF5.


Author(s):  
Jun Ueki

AbstractWe formulate and prove a profinite rigidity theorem for the twisted Alexander polynomials up to several types of finite ambiguity. We also establish torsion growth formulas of the twisted homology groups in a {{\mathbb{Z}}}-cover of a 3-manifold with use of Mahler measures. We examine several examples associated to Riley’s parabolic representations of two-bridge knot groups and give a remark on hyperbolic volumes.


1987 ◽  
Vol 107 ◽  
pp. 63-68 ◽  
Author(s):  
George Kempf

Let H be the Levi subgroup of a parabolic subgroup of a split reductive group G. In characteristic zero, an irreducible representation V of G decomposes when restricted to H into a sum V = ⊕mαWα where the Wα’s are distinct irreducible representations of H. We will give a formula for the multiplicities mα. When H is the maximal torus, this formula is Weyl’s character formula. In theory one may deduce the general formula from Weyl’s result but I do not know how to do this.


Sign in / Sign up

Export Citation Format

Share Document