Transverse vibrations of helical springs

1904 ◽  
Vol s4-18 (103) ◽  
pp. 59-72
Author(s):  
H. L. Bronson
2014 ◽  
Vol 10 (3) ◽  
pp. 379-398 ◽  
Author(s):  
V. Kobelev

Purpose – The purpose of this paper is to address the practically important problem of the load dependence of transverse vibrations for helical springs. At the beginning, the author develops the equations for transverse vibrations of the axially loaded helical springs. The method is based on the concept of an equivalent column. Second, the author reveals the effect of axial load on the fundamental frequency of transverse vibrations and derive the explicit formulas for this frequency. The fundamental natural frequency of the transverse vibrations of the spring depends on the variable length of the spring. The reduction of frequency with the load is demonstrated. Finally, when the frequency nullifies, the side buckling spring occurs. Design/methodology/approach – Helical springs constitute an integral part of many mechanical systems. A coil spring is a special form of spatially curved column. The center of each cross-section is located on a helix. The helix is a curve that winds around with a constant slope of the surface of a cylinder. An exact stability analysis based on the theory of spatially curved bars is complicated and difficult for further applications. Hence, in most engineering applications a concept of an equivalent column is introduced. The spring is substituted for the simplification of the basic equations by an equivalent column. Such a column must account for compressibility of axis and shear effects. The transverse vibration is represented by a differential equation of fourth order in place and second order in time. The solution of the undamped model equation could be obtained by separation of variables. The fundamental natural frequency of the transverse vibrations depends on the current length of the spring. Natural frequency is the function of the deflection and slenderness ratio. Is the fundamental natural frequency of transverse oscillations nullifies, the lateral buckling of the spring with the natural form occurs. The mode shape corresponds to the buckling of the spring with moment-free, simply supported ends. The mode corresponds to the buckling of the spring with clamped ends. The author finds the critical spring compression. Findings – Buckling refers to the loss of stability up to the sudden and violent failure of seed straight bars or beams under the action of pressure forces, whose line of action is the column axis. The known results for the buckling of axially overloaded coil springs were found using the static stability criterion. The author uses an alternative approach method for studying the stability of the spring. This method is based on dynamic equations. In this paper, the author derives the equations for transverse vibrations of the pressure-loaded coil springs. The fundamental natural frequency of the transverse vibrations of the column is proved to be the certain function of the axial force, as well as the variable length of the spring. Is the fundamental natural frequency of transverse oscillations turns to be to zero, is the lateral buckling of the spring occurs. Research limitations/implications – The spring is substituted for the simplification of the basic equations by an equivalent column. Such a column must account for compressibility of axis and shear effects. The more accurate model is based on the equations of motion of loaded helical Timoshenko beams. The dimensionless for beams of circular cross-section and the number of parameters governing the problem is reduced to four (helix angle, helix index, Poisson coefficient, and axial strain) is to be derived. Unfortunately, that for the spatial beam models only numerical results could be obtained. Practical implications – The closed form analytical formulas for fundamental natural frequency of the transverse vibrations of the column as function of the axial force, as well as the variable length of the spring are derived. The practically important formulas for lateral buckling of the spring are obtained. Originality/value – In this paper, the author derives the new equations for transverse vibrations of the pressure-loaded coil springs. The author demonstrates that the fundamental natural frequency of the transverse vibrations of the column is the function of the axial force. For study of the stability of the spring the author uses an alternative approach method. This method is based on dynamic equations. The new, original expressions for lateral buckling of the spring are also obtained.


Meccanica ◽  
1978 ◽  
Vol 13 (2) ◽  
pp. 90-108 ◽  
Author(s):  
A. R. Guido ◽  
L. Della Pietra ◽  
S. della Valle

2017 ◽  
Vol 65 (6) ◽  
pp. 949-959
Author(s):  
K. Michalczyk

AbstractIt has been demonstrated in previous studies that local elastomer coatings covering the end coils of helical springs can efficiently reduce the amplitudes of circum-resonant vibrations in such springs. The analysis of the influence that elastic coatings have on the frequencies and modes of natural transverse vibrations of springs is presented in this paper. The concept of the equivalent beam of the Timoshenko type is utilized in calculations of the frequencies and modes of transverse vibrations. The model developed allows users to determine the frequencies and modes of symmetric as well as antisymmetric vibrations of axially loaded springs with elastic coatings of arbitrary length. A comparison of the results obtained using FEM analysis, in which the model represented the actual spring geometry, with the results obtained by means of the presented model indicates its high accuracy.


Author(s):  
Paulo César Sales da Silva ◽  
Jackson Simoes ◽  
Carlos Jose de Araujo ◽  
jose joelson de melo santiago

Sign in / Sign up

Export Citation Format

Share Document