Nonlinear Interaction of Longitudinal and Transverse Vibrations of a Rod at an Internal Combinational Resonance in view of Opto-Thermal Excitation of N/MEMS

2021 ◽  
pp. 116247
Author(s):  
N.F. Morozov ◽  
D.A. Indeitsev ◽  
A.V. Lukin ◽  
I.A. Popov ◽  
L.V. Shtukin
2002 ◽  
Vol 8 (5-6) ◽  
pp. 96-101
Author(s):  
V.N. Fedun ◽  
◽  
A.K. Yukhimuk ◽  
A.D. Voitsekhovska ◽  
О.К. Cheremnykh ◽  
...  

Author(s):  
I. Khidirov ◽  
V. V. Getmanskiy ◽  
A. S. Parpiev ◽  
Sh. A. Makhmudov

This work relates to the field of thermophysical parameters of refractory interstitial alloys. The isochoric heat capacity of cubic titanium carbide TiCx has been calculated within the Debye approximation in the carbon concentration  range x = 0.70–0.97 at room temperature (300 K) and at liquid nitrogen temperature (80 K) through the Debye temperature established on the basis of neutron diffraction analysis data. It has been found out that at room temperature with decrease of carbon concentration the heat capacity significantly increases from 29.40 J/mol·K to 34.20 J/mol·K, and at T = 80 K – from 3.08 J/mol·K to 8.20 J/mol·K. The work analyzes the literature data and gives the results of the evaluation of the high-temperature dependence of the heat capacity СV of the cubic titanium carbide TiC0.97 based on the data of neutron structural analysis. It has been proposed to amend in the Neumann–Kopp formula to describe the high-temperature dependence of the titanium carbide heat capacity. After the amendment, the Neumann–Kopp formula describes the results of well-known experiments on the high-temperature dependence of the heat capacity of the titanium carbide TiCx. The proposed formula takes into account the degree of thermal excitation (a quantized number) that increases in steps with increasing temperature.The results allow us to predict the thermodynamic characteristics of titanium carbide in the temperature range of 300–3000 K and can be useful for materials scientists.


1975 ◽  
Author(s):  
Bruce J. West ◽  
Bruce I. Cohen ◽  
Kenneth M. Watson

Author(s):  
Koji Miwa ◽  
Harald Baayen

Abstract This paper introduces the generalized additive mixed model (GAMM) and the quantile generalized additive mixed model (QGAMM) through reanalyses of bilinguals’ lexical decision data from Dijkstra et al. (2010) and Miwa et al. (2014). We illustrate how regression splines can be used to test for nonlinear effects of cross-language similarity in form as well as for controlling experimental trial effects. We further illustrate the tensor product smooth for a nonlinear interaction between cross-language semantic similarity and word frequency. Finally, we show how the QGAMM helps clarify whether the effect of a particular predictor is constant across distributions of RTs.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4811
Author(s):  
Siavash Doshvarpassand ◽  
Xiangyu Wang

Utilising cooling stimulation as a thermal excitation means has demonstrated profound capabilities of detecting sub-surface metal loss using thermography. Previously, a prototype mechanism was introduced which accommodates a thermal camera and cooling source and operates in a reciprocating motion scanning the test piece while cold stimulation is in operation. Immediately after that, the camera registers the thermal evolution. However, thermal reflections, non-uniform stimulation and lateral heat diffusions will remain as undesirable phenomena preventing the effective observation of sub-surface defects. This becomes more challenging when there is no prior knowledge of the non-defective area in order to effectively distinguish between defective and non-defective areas. In this work, the previously automated acquisition and processing pipeline is re-designed and optimised for two purposes: 1—Through the previous work, the mentioned pipeline was used to analyse a specific area of the test piece surface in order to reconstruct the reference area and identify defects. In order to expand the application of this device over the entire test area, regardless of its extension, the pipeline is improved in which the final surface image is reconstructed by taking into account multiple segments of the test surface. The previously introduced pre-processing method of Dynamic Reference Reconstruction (DRR) is enhanced by using a more rigorous thresholding procedure. Principal Component Analysis (PCA) is then used in order for feature (DRR images) reduction. 2—The results of PCA on multiple segment images of the test surface revealed different ranges of intensities across each segment image. This potentially could cause mistaken interpretation of the defective and non-defective areas. An automated segmentation method based on Gaussian Mixture Model (GMM) is used to assist the expert user in more effective detection of the defective areas when the non-defective areas are uniformly characterised as background. The final results of GMM have shown not only the capability of accurately detecting subsurface metal loss as low as 37.5% but also the successful detection of defects that were either unidentifiable or invisible in either the original thermal images or their PCA transformed results.


Sign in / Sign up

Export Citation Format

Share Document