scholarly journals Natural transverse vibrations of helical springs in sections covered with elastic coatings

2017 ◽  
Vol 65 (6) ◽  
pp. 949-959
Author(s):  
K. Michalczyk

AbstractIt has been demonstrated in previous studies that local elastomer coatings covering the end coils of helical springs can efficiently reduce the amplitudes of circum-resonant vibrations in such springs. The analysis of the influence that elastic coatings have on the frequencies and modes of natural transverse vibrations of springs is presented in this paper. The concept of the equivalent beam of the Timoshenko type is utilized in calculations of the frequencies and modes of transverse vibrations. The model developed allows users to determine the frequencies and modes of symmetric as well as antisymmetric vibrations of axially loaded springs with elastic coatings of arbitrary length. A comparison of the results obtained using FEM analysis, in which the model represented the actual spring geometry, with the results obtained by means of the presented model indicates its high accuracy.

1958 ◽  
Vol 9 (4) ◽  
pp. 331-345
Author(s):  
E. H. Mansfield

SummaryThe natural transverse vibrations of a long cylindrical box of doubly symmetrical rectangular cross section are considered. Explicit stress-function solutions are obtained for the webs and the top and bottom surfaces so that the effects of shear lag and shear deflection are inherently included. The results are expressed simply in terms of an effective flexural rigidity, which may be determined with the aid of a number of graphs.


1904 ◽  
Vol s4-18 (103) ◽  
pp. 59-72
Author(s):  
H. L. Bronson

2013 ◽  
Vol 353-356 ◽  
pp. 3324-3327
Author(s):  
Xin Xue ◽  
Pei Jun Ju ◽  
Dan Sun

A new approach, namely the global residue harmonic balance, was developed to determine the accurately approximate periodic solution of a class of nonlinear Jerk equation containing velocity times acceleration-squared and velocity. Unlike other improved harmonic balance methods, all the forward harmonic residuals were considered in the present approximation to improve the accuracy. Comparison of the results obtained using this approach with the exact one and the existing results reveals that the high accuracy, simplicity and efficiency of the presented solution procedure. The method can be easily extended to other strongly nonlinear oscillators.


2014 ◽  
Vol 10 (3) ◽  
pp. 379-398 ◽  
Author(s):  
V. Kobelev

Purpose – The purpose of this paper is to address the practically important problem of the load dependence of transverse vibrations for helical springs. At the beginning, the author develops the equations for transverse vibrations of the axially loaded helical springs. The method is based on the concept of an equivalent column. Second, the author reveals the effect of axial load on the fundamental frequency of transverse vibrations and derive the explicit formulas for this frequency. The fundamental natural frequency of the transverse vibrations of the spring depends on the variable length of the spring. The reduction of frequency with the load is demonstrated. Finally, when the frequency nullifies, the side buckling spring occurs. Design/methodology/approach – Helical springs constitute an integral part of many mechanical systems. A coil spring is a special form of spatially curved column. The center of each cross-section is located on a helix. The helix is a curve that winds around with a constant slope of the surface of a cylinder. An exact stability analysis based on the theory of spatially curved bars is complicated and difficult for further applications. Hence, in most engineering applications a concept of an equivalent column is introduced. The spring is substituted for the simplification of the basic equations by an equivalent column. Such a column must account for compressibility of axis and shear effects. The transverse vibration is represented by a differential equation of fourth order in place and second order in time. The solution of the undamped model equation could be obtained by separation of variables. The fundamental natural frequency of the transverse vibrations depends on the current length of the spring. Natural frequency is the function of the deflection and slenderness ratio. Is the fundamental natural frequency of transverse oscillations nullifies, the lateral buckling of the spring with the natural form occurs. The mode shape corresponds to the buckling of the spring with moment-free, simply supported ends. The mode corresponds to the buckling of the spring with clamped ends. The author finds the critical spring compression. Findings – Buckling refers to the loss of stability up to the sudden and violent failure of seed straight bars or beams under the action of pressure forces, whose line of action is the column axis. The known results for the buckling of axially overloaded coil springs were found using the static stability criterion. The author uses an alternative approach method for studying the stability of the spring. This method is based on dynamic equations. In this paper, the author derives the equations for transverse vibrations of the pressure-loaded coil springs. The fundamental natural frequency of the transverse vibrations of the column is proved to be the certain function of the axial force, as well as the variable length of the spring. Is the fundamental natural frequency of transverse oscillations turns to be to zero, is the lateral buckling of the spring occurs. Research limitations/implications – The spring is substituted for the simplification of the basic equations by an equivalent column. Such a column must account for compressibility of axis and shear effects. The more accurate model is based on the equations of motion of loaded helical Timoshenko beams. The dimensionless for beams of circular cross-section and the number of parameters governing the problem is reduced to four (helix angle, helix index, Poisson coefficient, and axial strain) is to be derived. Unfortunately, that for the spatial beam models only numerical results could be obtained. Practical implications – The closed form analytical formulas for fundamental natural frequency of the transverse vibrations of the column as function of the axial force, as well as the variable length of the spring are derived. The practically important formulas for lateral buckling of the spring are obtained. Originality/value – In this paper, the author derives the new equations for transverse vibrations of the pressure-loaded coil springs. The author demonstrates that the fundamental natural frequency of the transverse vibrations of the column is the function of the axial force. For study of the stability of the spring the author uses an alternative approach method. This method is based on dynamic equations. The new, original expressions for lateral buckling of the spring are also obtained.


2014 ◽  
Vol 12 ◽  
pp. 10-15 ◽  
Author(s):  
Imrich Lipták ◽  
Ján Erdélyi ◽  
Peter Kyrinovič ◽  
Alojz Kopáčik

The paper presents the possibilities of radar interferometry in dynamic deformationmonitoring of bridge structures. The technology is increasingly used for this purposethanks to high accuracy of realized measurements and possibility to measure deformationat multiple places of the monitored structure. High frequency of realized measurements (upto 200 Hz) enables to determine the most of significant vibration modes of bridgedeformation. This technology is presented on real case study of the cycle bridge over theriver Morava near to Bratislava (Slovak republic). A spectral analysis of vibrationfrequencies is performed by discrete Fourier transformation. The evaluation of correctnessof the obtained deformation is performed by comparison of the results with accelerometerand total station measurements and FEM (Finite Element Method) model of the structure.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 449
Author(s):  
Ivan Okorn ◽  
Marko Nagode ◽  
Jernej Klemenc ◽  
Simon Oman

The influence of the working load on the dynamic loading of the bolt was investigated in our study for two cases of flange joints. The analytical calculation according to the Verein Deutscher Ingenieure (VDI) 2230 recommendation and the numerical analysis using the finite element method (FEM) were performed for a model of a four-bolt joint. To verify the FEM analysis, the forces in the bolts were measured during preloading and during the application of the working load on the test rig. Based on the analytical and numerical results, the influence of the working load application point on the bolt load and its fatigue life was analysed for different cases. Comparison of the results shows that the analytical method overestimates the additional bolt stresses at low working load, mainly due to the extremely large fraction of bending stress. As the working load increases, the differences between the two methods decrease, but only for the reason that the analytical method can only linearly scale the overestimated results at lower working load, and FEM analysis, on the other hand, shows a progressive increase of the additional stress in the bolt at higher working loads due to the spreading of the flange. It is also shown that a high washer significantly increases the fatigue life of the bolt for two reasons: (i) a high washer reduces the additional stress in the bolt, and (ii) the high washer shifts the critical fatigue point from the thread area to the transition of the bolt shank to the head.


Meccanica ◽  
1978 ◽  
Vol 13 (2) ◽  
pp. 90-108 ◽  
Author(s):  
A. R. Guido ◽  
L. Della Pietra ◽  
S. della Valle

Sign in / Sign up

Export Citation Format

Share Document