axial force
Recently Published Documents


TOTAL DOCUMENTS

1668
(FIVE YEARS 347)

H-INDEX

40
(FIVE YEARS 5)

2022 ◽  
Vol 1 (1) ◽  
pp. 49-55
Author(s):  
Vadim Kuts ◽  
Mikhail Razumov ◽  
Alexander Byshkin ◽  
Pavel Glazkov

Improving the efficiency of the drilling is an important task in the engineering. Supported by improved board drilling in metal parts, which before drilling elastically deform in the region below the limit of proportionally, which ensures the immutability of other sizes. The experimental way was semi-centered dependence of the axial force when performing blanks from duralumin D16 in elasticly stressful state. These dependences allow you to select the Cor-Rubber cutting modes when drilling parts from duralumin D16.


2022 ◽  
Vol 120 (1) ◽  
pp. 012903
Author(s):  
Gih-Keong Lau ◽  
Fa-Yi Chen ◽  
Zhe-Xian Ren

2022 ◽  
Vol 2160 (1) ◽  
pp. 012082
Author(s):  
Faye Jin ◽  
Ran Tao ◽  
Ruofu Xiao

Abstract Canned motor pump is widely used in chemical industry. Due to the particularity of its application, it is necessary to ensure that the medium does not leak completely. If the axial force of impeller is too large, it will directly affect the performance of canned motor pump. Therefore, the floating impeller could be used in the pump to balance the axial force. In this paper, the relationship between axial clearance and leakage rate at the key part of canned motor pump is studied by means of numerical calculation and experimental verification. It is found that the fitting curve is highly consistent with the calculated value, which provided a good theoretical basis for further study of axial clearance control axial force and experimental axial force self-balance. In addition, the leakage rate increases with the increase of axial clearance. The static pressure in the axial clearance first increases and then decreases with the decrease of radius, and the maximum static pressure value is about 10.5% ∼ 15.8% near the clearance inlet. This study is of great significance to the theoretical research on the self-balance state of axial force of impeller.


2022 ◽  
Vol 2148 (1) ◽  
pp. 012064
Author(s):  
Zhanyi Zhang ◽  
Peiheng Long

Abstract In order to understand the stress of small through tied arch bridge. In this paper, the finite element simulation analysis of Lu Shanqu bridge is carried out in the completion stage by using MADIS / civil software, and the tie bars, arch ribs and suspenders of the superstructure are monitored. The results show that the axial force of the arch rib of this bridge is reduced by the balance of the tie rod, and the bending moment of the tie rod is greatly reduced by the action of the suspender. The stress characteristics of the bridge type are internal statically indeterminate and external statically indeterminate structure.


2021 ◽  
Author(s):  
Tongtong Jin ◽  
Chuliang Yan ◽  
Jinyan Guo ◽  
Chuanhai Chen ◽  
Dong Zhu

Abstract In order to overcome the problem that the existing methods of compiling load spectrum of spindle or machine tool mainly aim at the cutting force spectrum, torque spectrum and speed spectrum respectively, which ignore the connection between each spectrum, in this paper, a method for compiling drilling load spectrum of motorized spindle in CNC machine tool based on the characteristics of drilling force is proposed. Firstly, drilling tests under different processing technologies are carried out to measure its load, and the correction coefficient in the empirical formula of drilling force is obtained through fitting the measured drilling force, which makes the calculation of the axial force and torque more reasonable. Secondly, compared with the extended factor method, the transcendental probability method is optimized to solve the ultimate load of the axial force. Then, after setting the axial force as the main load of drilling, an eight-stage load spectrum for the main load is compiled. Finally, according to the relationship between the axial force and other loads, the eight-stage loading spectrum is transformed into a multi-dimensional drilling load spectrum.


Author(s):  
Buchao Xu ◽  
Weiqiang Zhao ◽  
Wenhua Lin ◽  
Zhongyu Mao ◽  
Ran Tao ◽  
...  

During operation, the support bracket is the main part to withstand the axial loads of the pumped storage unit. Moreover, the effects of axial loads including the hydraulic thrust of runner flow and the weight of runner body may cause the support bracket deformation and fatigue damage. For the safe and stable operation, the simulation of the axial force and the structural analysis of the support bracket of a pumped storage unit was carried out in this paper. The CFD simulation result has revealed the variation rule of the axial force in different operating conditions. Using ANSYS Mechanical, the static stresses and deformation of support bracket with axial loads were calculated. The results release the location and variations of maximum stress and maximum deformation caused by the axial loads. By comparing the predicted maximum axial force with the admission force calculated by the structural analysis, it is found that the axial force of the researched machine is within the safe range. This study provides the reference for the safety and stable operation of the pumped storage unit.


2021 ◽  
Vol 15 (1) ◽  
pp. 152-163
Author(s):  
Massimiliano Ferraioli

Background: The steel beam-to-column connections are vulnerable structural elements when a building loses one or more of its vertical load-carrying components due to abnormal or accidental loading conditions. After a column is destroyed by abnormal loads, the tensile axial force of the beam gradually increased, while the bending moment decreased, and the load-resistance mechanism shifts from a flexural mechanism to a catenary mechanism, with the axial force becoming the prevailing factor. Aims: This paper investigates the progressive collapse performance of steel beam-to-column connections. While undergoing large deformation, the beam-to-column connections are subjected to moment, shear, and tension in conjunction with high ductility demand. Their behavior under monotonic loading depends on the moment-axial tension interaction and greatly affects the progressive collapse resistance of the structure. This paper presents a critical review of experimental tests of different types of steel beam-column joints (flexible, rigid, and semi-rigid) under a central-column-removal scenario. Methods: The experimental results, including load-deformation relationships, failure modes, and catenary effects, are described in detail. The findings are used to evaluate the rotation capacity of different types of steel beam-to-column connections. The results are compared to the acceptance criteria specified by the main progressive collapse guidelines for several beam-to-column connection categories. Results: In simple (flexible) joints, the stiffness and strength at higher drift angles essentially depend on the tensile capacity of the connection that prevents, in some cases, the full development of the catenary mechanism. The connection depth alone does not seem to be an effective parameter to predict the rotational capacity of beam-to-column connections, since different connections with similar values of the connection depth result in very different values of the maximum rotation capacity. In fully rigid and semi-rigid connections, after the column removal, the flexural resistance controls the behavior at the preliminary phase, and the tensile force is almost zero. With increased downward displacement, the axial tensile force also increases, developing a catenary mechanism. Although the stiffness of rigid and semi-rigid connections is higher than flexible connections, both categories result in similar rotation capacity. Conclusion: In all the simple connections herein considered, the plastic rotation capacity obtained by tests was found much higher than the code recommended values that are probably too conservative. On the contrary, for one rigid and two semi-rigid connections, the values of the plastic rotation capacity obtained by tests are lower than the corresponding recommended values. Thus, the suggested acceptance criteria proved to be out of the conservative side.


Author(s):  
Kazuhiko Hasebe ◽  
Yuji Wada ◽  
Kentaro Nakamura

Abstract As a health monitoring tool of bolts in infrastructures, we propose a non-contact evaluation method for the axial force of a bolt. Deformation of the bolt head is measured as an electrical capacitance variation detected as a frequency shift of a simple circuit composed of a quartz crystal resonator and coils. The measurement was carried out via magnetic field coupling between the coil installed on the bolt head and another coil connected to the measurement instrument. Since the method requires no active electronic circuit or battery for the bolt, low cost and high durability can be expected. First, the circuit was analyzed and optimized using an equivalent circuit model. Then, the feasibility of the proposed method was experimentally studied using a prototype. It was demonstrated that the method enabled non-contact axial force estimation in which the dependence on the distance between the coils is sufficiently small for detecting bolt looseness.


Sign in / Sign up

Export Citation Format

Share Document