scholarly journals Ni Underlayer Effect for the Structure Development and Visible Light Photocatalytic Efficiency of Carbon-Doped TiO2 Film

2021 ◽  
Vol 25 (1) ◽  
pp. 1032-1042
Author(s):  
Emilija Demikyte ◽  
Sandra Sakalauskaite ◽  
Neringa Kuliesiene ◽  
Simona Tuckute ◽  
Marius Urbonavicius ◽  
...  

Abstract Photocatalytic treatment of contaminated aqueous solutions makes use of the specific interaction between photocatalysts and ultra-violet or visible light irradiation. This method belongs to the wider class of Advanced Oxidation Processes that generates reactive oxygen species (peroxides, superoxide, hydroxyl radical, singlet oxygen, etc.) and uses them for the non-selective oxidation of various organic and inorganic compounds. In THE current study magnetron sputtering technique was used to deposit carbon-doped TiO2 films which are known to have significant photocatalytic activity in the visible light spectra and can be used for the neutralisation of contaminated solutions. Structural properties of the as-deposited films were analysed by XRD, XPS and AFM techniques, whereas their visible light photocatalytic activity was estimated by analysing Rhodamine B solution bleaching kinetics. When carbon-doped TiO2 photocatalysts were formed on borosilicate glass XRD analysis showed that they consisted of mixed phase (rutile-anatase) TiO2 where both phases contributed by similar parts. However, when the same deposition procedure was used to deposit carbon-doped TiO2 films on glass covered by Ni layer, formation of metastable anatase phase was enhanced. Estimation of visible light photocatalytic activity of the films revealed that Ni underlayer had positive effect for the efficiency of Rhodamine B solution bleaching and it could be beneficial for the practical wastewater treatment systems. It was suggested that observed improvement was mainly achieved due to the structural changes of TiO2 crystal phase, but other mechanisms like prevention of impurity diffusion from the glass substrate to the carbon-doped TiO2 film, or positive Ni doping effect could not be excluded completely.

2019 ◽  
Vol 10 ◽  
pp. 1412-1422 ◽  
Author(s):  
Minlin Ao ◽  
Kun Liu ◽  
Xuekun Tang ◽  
Zishun Li ◽  
Qian Peng ◽  
...  

A BiOCl/TiO2/diatomite (BTD) composite was synthesized via a modified sol–gel method and precipitation/calcination method for application as a photocatalyst and shows promise for degradation of organic pollutants in wastewater upon visible-light irradiation. In the composite, diatomite was used as a carrier to support a layer of titanium dioxide (TiO2) nanoparticles and bismuth oxychloride (BiOCl) nanosheets. The results show that TiO2 nanoparticles and BiOCl nanosheets uniformly cover the surface of diatomite and bring TiO2 and BiOCl into close proximity. Rhodamine B was used as the target degradation product and visible light (λ > 400 nm) was used as the light source for the evaluation of the photocatalytic properties of the prepared BTD composite. The results show that the catalytic performance of the BTD composite under visible-light irradiation is much higher than that of TiO2 or BiOCl alone. When the molar ratio of BiOCl to TiO2 is 1:1 and the calcination temperature is 400 °C, the composite was found to exhibit the best catalytic effect. Through the study of the photocatalytic mechanism, it is shown that the strong visible-light photocatalytic activity of the BTD composite results mainly from the quick migration of photoelectrons from the conduction band of TiO2/diatomite to the surface of BiOCl, which promotes the separation effect and reduces the recombination rate of the photoelectron–hole pair. Due to the excellent catalytic performance, the BTD composite shows great potential for wide application in the field of sewage treatment driven by solar energy.


RSC Advances ◽  
2015 ◽  
Vol 5 (23) ◽  
pp. 17667-17675 ◽  
Author(s):  
Jian-Wen Shi ◽  
Chang Liu ◽  
Chi He ◽  
Jun Li ◽  
Chong Xie ◽  
...  

C-doped TiO2 nanoplates (CTNP) with exposed {001} facets were synthesized for the first time. The obtained CTNP presented high visible-light photocatalytic activity. A reasonable mechanism of photocatalysis on CTNP under visible light was proposed.


Sign in / Sign up

Export Citation Format

Share Document