inorganic compounds
Recently Published Documents


TOTAL DOCUMENTS

2145
(FIVE YEARS 385)

H-INDEX

76
(FIVE YEARS 12)

2022 ◽  
Vol 8 (4) ◽  
pp. 248-253
Author(s):  
Aarti Sangray ◽  
Ajeet Pal Singh ◽  
Amar Pal Singh

To evaluate the activity of Ethanolic and Aqueous extracts of leaves of against three fungal strains i.e. MTCC3814, and Candida tropicalis MTCC9038 in-vitro.Phytochemical analysis of belonging to family brassicacaea was examined using Ethanolic and Aqueous extracts. Ethanolic and Aqueous extracts of leaves of were investigated individually for antifungal activity by Agar well diffusion method. Both the extracts were tested against selected fungal strains i.e. and to find the inhibitory activities of fungal growth at the dose level of 50 and 100 μg/ml.The phytochemical analysis of ethanolic and aqueous extracts confirmed the presence of phenolic compounds, glycosides, tannins, carbohydrates, proteins, amino acids, tannins, reducing suger, non-reducing suger and inorganic compounds such as calcium, magnesium, iron, carbonate & sulphates. Ethanolic extract of showed considerably high antifungal activities against selected microorganisms than aqueous extract.Although the active components were not isolated but antifungal active plant principles such as flavonoids, glycosides and tannins were observed in the extract. Ethanolic extract of possess effective antifungal properties for selected fungal strains i.e.


2022 ◽  
Author(s):  
SURESHKUMAR P ◽  
suresh kumar ◽  
T. Jagadeesha ◽  
L. Natrayan ◽  
M. Ravichandran ◽  
...  

Abstract The present research study investigates the Mechanical, Physical, and Tribological properties of powder metallurgy (PM) produced AA6063 alloy reinforced with silicon nitride (Si3N4) and copper nitrate (CuN2O6). Incorporation of Si3N4 & CuN2O6 reinforcement in matrix material ranged from 6 to 12 % Si3N4 in a 6-step interval and 2 to 6 %CuN2O6 in a two-step interval. The characterizations were made on the PM-produced specimens using OM, EDS, XRD, and Hardness. The reinforcement particles were uniformly distributed, which was attributed to a homogeneous mixer of matrix and reinforcements. The test findings show that as the reinforcing percentage of the ceramic and inorganic compound increases, properties such as hardness and density rise considerably and monolithically. The existence of phases such as Si3N4 and CuN2O6 reinforcement in the AA6063 matrix was ensured by X-ray diffraction. The hardness of AA6063/12%Si3N4/6%CuN2O6 increased by 88% over the base alloy due to a mismatch in thermal expansion between the Al matrix and reinforcement, which causes massive internal stress, causing the aluminium matrix to plastically deform to accommodate the reduced volume expansion of Si3N4 and CuN2O6 particles. The dry sliding wear test was determined using the Pin-on-Disc method, and the results show that the composite is more wear-resistant. An orthogonal array and analysis of variance were utilized to evaluate the solution, including parameters using the Taguchi robust design technique. The weight percentage of the Si3N4/CuN2O6 compound and the relationship between weight % of reinforcement and applied load had the most significant impact on composite wear resistance. The produced composite's wear morphology was studied using images from a scanning electron microscope and energy dispersive spectroscopy.


Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 456
Author(s):  
Marine Guy ◽  
Manon Mathieu ◽  
Ioannis P. Anastopoulos ◽  
María G. Martínez ◽  
Frédéric Rousseau ◽  
...  

In this work, Norway spruce bark was used as a precursor to prepare activated biochars (BCs) via chemical activation with potassium hydroxide (KOH) as a chemical activator. A Box–Behnken design (BBD) was conducted to evaluate and identify the optimal conditions to reach high specific surface area and high mass yield of BC samples. The studied BC preparation parameters and their levels were as follows: pyrolysis temperature (700, 800, and 900 °C), holding time (1, 2, and 3 h), and ratio of the biomass: chemical activator of 1: 1, 1.5, and 2. The planned BBD yielded BC with extremely high SSA values, up to 2209 m2·g−1. In addition, the BCs were physiochemically characterized, and the results indicated that the BCs exhibited disordered carbon structures and presented a high quantity of O-bearing functional groups on their surfaces, which might improve their adsorption performance towards organic pollutant removal. The BC with the highest SSA value was then employed as an adsorbent to remove Evans blue dye (EB) and colorful effluents. The kinetic study followed a general-order (GO) model, as the most suitable model to describe the experimental data, while the Redlich–Peterson model fitted the equilibrium data better. The EB adsorption capacity was 396.1 mg·g−1. The employment of the BC in the treatment of synthetic effluents, with several dyes and other organic and inorganic compounds, returned a high percentage of removal degree up to 87.7%. Desorption and cyclability tests showed that the biochar can be efficiently regenerated, maintaining an adsorption capacity of 75% after 4 adsorption–desorption cycles. The results of this work pointed out that Norway spruce bark indeed is a promising precursor for producing biochars with very promising properties.


2022 ◽  
Vol 24 (1) ◽  
pp. 216-230
Author(s):  
K. Madhanasundareswari ◽  
◽  
Reshmi Gopalakrishnan ◽  
K. Gayathri ◽  
◽  
...  

The problems linked to plastic wastes have led to the development of biodegradable plastics. More specifically, biodegradable bioplastics are the polymers that are mineralized into carbon dioxide, methane, water, inorganic compounds, or biomass through the enzymatic action of specific microorganisms. They could, therefore, be a suitable and environmentally friendly substitute to conventional petrochemical plastics. The physico-chemical structure of the biopolymers, the environmental conditions, as well as the microbial populations to which the bioplastics are exposed to are the most influential factors to biodegradation. The Borassus flabellifer is a tall and erect palm, with large, fan-shaped leaves which are quite unlike the pinnate leaves of other palms. Borassus is from a Greek word describing the leathery covering of the fruit and flabellifer means “fan bearer”. In recent years, India stands first in the world in terms of its wealth of Palmyra (Borassus flabellifer population nearly 122 million palms. In this study overall purpose was to investigate the utilization of food industry wastes in order for the bioplastic production. To achieve this objective the production of bioplastic from palmyra sprout investigated. In addition, some properties of produced bioplastic such as water, absorption capacity, solubility and biodegradability, characterisation studies were analysed. Journal of University of Shanghai for Science and Technology ISSN: 1007-6735 Volume


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 432
Author(s):  
Eva Magovac ◽  
Bojana Vončina ◽  
Igor Jordanov ◽  
Jaime C. Grunlan ◽  
Sandra Bischof

A detailed review of recent developments of layer-by-layer (LbL) deposition as a promising approach to reduce flammability of the most widely used fibers (cotton, polyester, polyamide and their blends) is presented. LbL deposition is an emerging green technology, showing numerous advantages over current commercially available finishing processes due to the use of water as a solvent for a variety of active substances. For flame-retardant (FR) purposes, different ingredients are able to build oppositely charged layers at very low concentrations in water (e.g., small organic molecules and macromolecules from renewable sources, inorganic compounds, metallic or oxide colloids, etc.). Since the layers on a textile substrate are bonded with pH and ion-sensitive electrostatic forces, the greatest technological drawback of LbL deposition for FR finishing is its non-resistance to washing cycles. Several possibilities of laundering durability improvements by different pre-treatments, as well as post-treatments to form covalent bonds between the layers, are presented in this review.


2022 ◽  
Vol 24 (1) ◽  
pp. 1-33
Author(s):  
M. Meenakshi ◽  

Water pollution is an issue of great concern worldwide, contamination by organic compounds, inorganic compounds and microorganisms. Bioremediation using microorganisms helps in the removal of toxic metals from the environment. The focus is on the heavy metals associated with environmental contamination, lead (Pb), cadmium (Cd), and chromium (Cr) which are potentially hazardous to ecosystems. In the present study textile effluent was collected, and subjected to Physicochemical treatment methods , Herbal-Metal nanocomposite was prepared and used to treat textile effluents. As a bioremediation study, the plant growth potential of treated effluents was evaluated using pot studies of an aquatic plant .Laboratory and field test results confirmed superior bioremediation efficiency and long-term effect. When compared to today’s most-efficient bioremediation technologies there is an efficient, fast, safe, and inexpensive way to clean up polluted waters through acceleration of natural bioremediation process. Nanotechnology provides an economical, convenient and ecofriendly means of wastewater remediation. The results obtained in this study shall be carried out as future studies using different types and concentrations of nanoparticles for the treatment of any types of effluents causing land and water pollution. There is a growing need for the development of novel, efficient, eco-friendly, and cost-effective approach for the remediation of inorganic metals released into the environment and to safeguard the ecosystem. In this regard, recent advances in microbes-base heavy metal have propelled bioremediation as a prospective alternative to conventional techniques.


2022 ◽  
Vol 4 (1) ◽  
Author(s):  
Yi Yang ◽  
Jin Sun ◽  
Chong Chen ◽  
Yadong Zhou ◽  
Cindy Lee Van Dover ◽  
...  

Abstract Background Marine animals often exhibit complex symbiotic relationship with gut microbes to attain better use of the available resources. Many animals endemic to deep-sea chemosynthetic ecosystems host chemoautotrophic bacteria endocellularly, and they are thought to rely entirely on these symbionts for energy and nutrition. Numerous investigations have been conducted on the interdependence between these animal hosts and their chemoautotrophic symbionts. The provannid snail Alviniconcha marisindica from the Indian Ocean hydrothermal vent fields hosts a Campylobacterial endosymbiont in its gill. Unlike many other chemosymbiotic animals, the gut of A. marisindica is reduced but remains functional; yet the contribution of gut microbiomes and their interactions with the host remain poorly characterised. Results Metagenomic and metatranscriptomic analyses showed that the gut microbiome of A. marisindica plays key nutritional and metabolic roles. The composition and relative abundance of gut microbiota of A. marisindica were different from those of snails that do not depend on endosymbiosis. The relative abundance of microbial taxa was similar amongst three individuals of A. marisindica with significant inter-taxa correlations. These correlations suggest the potential for interactions between taxa that may influence community assembly and stability. Functional profiles of the gut microbiome revealed thousands of additional genes that assist in the use of vent-supplied inorganic compounds (autotrophic energy source), digest host-ingested organics (carbon source), and recycle the metabolic waste of the host. In addition, members of five taxonomic classes have the potential to form slime capsules to protect themselves from the host immune system, thereby contributing to homeostasis. Gut microbial ecology and its interplay with the host thus contribute to the nutritional and metabolic demands of A. marisindica. Conclusions The findings advance the understanding of how deep-sea chemosymbiotic animals use available resources through contributions from gut microbiota. Gut microbiota may be critical in the survival of invertebrate hosts with autotrophic endosymbionts in extreme environments.


2022 ◽  
Vol 9 ◽  
Author(s):  
Adriana M. Navarro-Suárez ◽  
Milo S. P. Shaffer

Structural energy storage devices (SESDs), designed to simultaneously store electrical energy and withstand mechanical loads, offer great potential to reduce the overall system weight in applications such as automotive, aircraft, spacecraft, marine and sports equipment. The greatest improvements will come from systems that implement true multifunctional materials as fully as possible. The realization of electrochemical SESDs therefore requires the identification and development of suitable multifunctional structural electrodes, separators, and electrolytes. Different strategies are available depending on the class of electrochemical energy storage device and the specific chemistries selected. Here, we review existing attempts to build SESDs around carbon fiber (CF) composite electrodes, including the use of both organic and inorganic compounds to increase electrochemical performance. We consider some of the key challenges and discuss the implications for the selection of device chemistries.


2022 ◽  
pp. 247-268
Author(s):  
Nnabuk Okon Eddy ◽  
Rajni Garg

Adsorption is widely acknowledged as one of the best options that are available for the removal of contaminants from water. Contamination of water does not only create water scarcity, but it has the capacity to generate and transfer several environmental problems including threat to public health. This chapter reviewed calcium oxide nanoparticle (CaONP) as a noble metal oxide for the removal of contaminants from water. The review is concentrated in the general overview of water contamination, metal oxide nanoparticles, general application of CaONP, synthetic methods, characterization method, and applications. The chapter observed that little is done on the use of CaONP for the removal of contaminants from water except for dyes, some heavy metal ions, and few organic/inorganic compounds. It is also observed that CaONP can be applied as adsorbent and in photocatalytic degradation of dye. Suggestions are made on the possibility of utilizing local raw materials that are easily accessible, cheap, and environmental sources of raw materials for the synthesis of CaONP.


Author(s):  
Amit Rastogi ◽  
Rajesh Singh ◽  
Ahmed Barhoums

Laccase (EC 1.10.3.2) is a multicopper blue oxidase which are involved in the oxidation of a broad range of organic substrates, including phenols, polyphenols, anilines, and even certain inorganic compounds by a one-electron transfer mechanism. Laccases are widely distributed in bacteria, fungai, insects and higher plants. There are mainly two production techniques for cultivation of laccase such as submersed fermentation and solid- state fermentation. This paper briefly discuss the effect of carbon source, effect of nitrogen source, effect of inducers, effects of surfactants, effect of agitator, influence of metal ions and use of agro-industrial waste in production medium. The paper also discussed the purification techniques such as ammonium sulphate precipitation for extraction purpose followed by dialysis and ion-exchange chromatography as well characterization techniques. Laccases are known to show application ranging from pharmaceutical industries to textile sector as well as in biosensor development.


Sign in / Sign up

Export Citation Format

Share Document