scholarly journals Matrix-variate statistical distributions and fractional calculus

Author(s):  
A. Mathai ◽  
H. Haubold

AbstractA connection between fractional calculus and statistical distribution theory has been established by the authors recently. Some extensions of the results to matrix-variate functions were also considered. In the present article, more results on matrix-variate statistical densities and their connections to fractional calculus will be established. When considering solutions of fractional differential equations, Mittag-Leffler functions and Fox H-function appear naturally. Some results connected with generalized Mittag-Leffler density and their asymptotic behavior will be considered. Reference is made to applications in physics, particularly superstatistics and nonextensive statistical mechanics.

2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Said R. Grace

This paper deals with the asymptotic behavior of positive solutions of certain forced fractional differential equations of the formDcαCyt=et+ft, xt,c>1,α∈0,1, whereyt=atx′t′,c0=y(c)/Γ(1) =yc, andc0is a real constant. From the obtained results, we derive a technique which can be applied to some related fractional differential equations.


Author(s):  
Nguyen Cong ◽  
Doan Son ◽  
Hoang Tuan

AbstractOur aim in this paper is to investigate the asymptotic behavior of solutions of linear fractional differential equations. First, we show that the classical Lyapunov exponent of an arbitrary nontrivial solution of a bounded linear fractional differential equation is always nonnegative. Next, using the Mittag-Leffler function, we introduce an adequate notion of fractional Lyapunov exponent for an arbitrary function. We show that for a linear fractional differential equation, the fractional Lyapunov spectrum which consists of all possible fractional Lyapunov exponents of its solutions provides a good description of asymptotic behavior of this equation. Consequently, the stability of a linear fractional differential equation can be characterized by its fractional Lyapunov spectrum. Finally, to illustrate the theoretical results we compute explicitly the fractional Lyapunov exponent of an arbitrary solution of a planar time-invariant linear fractional differential equation.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Tariq A. Aljaaidi ◽  
Deepak B. Pachpatte ◽  
Thabet Abdeljawad ◽  
Mohammed S. Abdo ◽  
Mohammed A. Almalahi ◽  
...  

AbstractThe theory of fractional integral inequalities plays an intrinsic role in approximation theory also it has been a key in establishing the uniqueness of solutions for some fractional differential equations. Fractional calculus has been found to be the best for modeling physical and engineering processes. More precisely, the proportional fractional operators are one of the recent important notions of fractional calculus. Our aim in this research paper is developing some novel ways of fractional integral Hermite–Hadamard inequalities in the frame of a proportional fractional integral with respect to another strictly increasing continuous function. The considered fractional integral is applied to establish some new fractional integral Hermite–Hadamard-type inequalities. Moreover, we present some special cases throughout discussing this work.


2020 ◽  
Vol 40 (2) ◽  
pp. 227-239
Author(s):  
John R. Graef ◽  
Said R. Grace ◽  
Ercan Tunç

This paper is concerned with the asymptotic behavior of the nonoscillatory solutions of the forced fractional differential equation with positive and negative terms of the form \[^{C}D_{c}^{\alpha}y(t)+f(t,x(t))=e(t)+k(t)x^{\eta}(t)+h(t,x(t)),\] where \(t\geq c \geq 1\), \(\alpha \in (0,1)\), \(\eta \geq 1\) is the ratio of positive odd integers, and \(^{C}D_{c}^{\alpha}y\) denotes the Caputo fractional derivative of \(y\) of order \(\alpha\). The cases \[y(t)=(a(t)(x^{\prime}(t))^{\eta})^{\prime} \quad \text{and} \quad y(t)=a(t)(x^{\prime}(t))^{\eta}\] are considered. The approach taken here can be applied to other related fractional differential equations. Examples are provided to illustrate the relevance of the results obtained.


2021 ◽  
Vol 24 (2) ◽  
pp. 483-508
Author(s):  
Mohammed D. Kassim ◽  
Nasser-eddine Tatar

Abstract The asymptotic behaviour of solutions in an appropriate space is discussed for a fractional problem involving Hadamard left-sided fractional derivatives of different orders. Reasonable sufficient conditions are determined ensuring that solutions of fractional differential equations with nonlinear right hand sides approach a logarithmic function as time goes to infinity. This generalizes and extends earlier results on integer order differential equations to the fractional case. Our approach is based on appropriate desingularization techniques and generalized versions of Gronwall-Bellman inequality. It relies also on a kind of Hadamard fractional version of l'Hopital’s rule which we prove here.


Sign in / Sign up

Export Citation Format

Share Document