scholarly journals NEW BOUNDARY ELEMENT FORMULATION FOR THE SOLUTION OF LAPLACE’S EQUATION

Author(s):  
JACQUES LOBRY
2011 ◽  
Vol 462-463 ◽  
pp. 1267-1272
Author(s):  
M. Safuadi ◽  
M. Ridha ◽  
Syifaul Huzni ◽  
Syarizal Fonna ◽  
Ahmad Kamal Ariffin ◽  
...  

In this paper, combination of a boundary element formulation and genetic algorithm (GA) was developed and used for analyzing of cathodic protection systems of buried pipe-lines structures. It is very important to maintain the effectiveness of the cathodic protection system for pipeline structure, in order to lengthen the lifetime of the system. However, nowadays the evaluation of the effectiveness of the system only could be performed after the system applying in the field. This study was conducted to combine 2D boundary element method (BEM) and GA in order to evaluate the effectiveness of the cathodic protection system for pipe-lines structure using ribbon sacrificial anode. Two factors i.e. the soil conductivity and the distance between pipe-lines and anode, were analyzed by using the proposed method. In this method, the potential in the domain was modeled by Laplace’s equation. The anode and cathode areas were represented by polarization curves of different metals. Boundary element method was applied to solve the Laplace’s equation to obtain any potential and current density in the whole surface of the pipe. The pipe and anode were modeled into 2D model. The numerical analysis result shows that the optimum distance between pipe-lines and anode can be determined by combining BEM and GA.


2011 ◽  
Vol 339 ◽  
pp. 171-175 ◽  
Author(s):  
Syarizal Fonna ◽  
M. Ridha ◽  
Syifaul Huzni ◽  
Israr Israr ◽  
Ahmad Kamal Ariffin

Boundary element inverse analysis (BEIA) by using genetic algorithm (GA) to identify corrosion location has been introduced by many researchers. However, the BEIA using GA is more complex to be programmed since it involved with genetic operators such as crossover and mutation. Recently, Particle Swarm Optimization (PSO) already takes researcher’s attention because of its simplicity to be programmed and comparable accuracy. This study is conducted to develop BEIA by combining Boundary Element Method (BEM) and PSO to identify the corrosion location of the steels in concrete structure from some potential data on concrete surface. The potential in the concrete domain was modeled by Laplace’s equation. The anode and cathode are represented by each polarization curve. The inverse problem is carried out by means of minimizing a cost function i.e. a difference between the calculated and measured potentials on the concrete surface. The calculated values of potential are obtained by solving the Laplace’s equation using boundary element method (BEM). Numerical simulation results show that the developed BEIA has proven that it can identify the corrosion location on the surface of reinforcement steel precisely.


Sign in / Sign up

Export Citation Format

Share Document