scholarly journals Welding sequence optimization of plasma arc for welded thin structures

Author(s):  
M. B. Mohammed ◽  
W. Sun ◽  
T. H. Hyde
Author(s):  
Jesus Romero-Hdz ◽  
Baidya Saha ◽  
Gengis Toledo-Ramirez ◽  
Ismael Lopez-Juarez

2020 ◽  
Vol 142 (10) ◽  
Author(s):  
Roham Sadeghi Tabar ◽  
Kristina Wärmefjord ◽  
Rikard Söderberg ◽  
Lars Lindkvist

Abstract A digital twin for geometry assurance contains a set of analyses that are performed to steer the real production for securing the geometry of the final assembly. In sheet metal assemblies, spot welding is performed to join the parts together. The sequence of the welding has a considerable influence on the geometrical outcome of the final assembly. In industry, the sequence of welding to secure the geometry is mainly derived by tacit manufacturing knowledge. Including such knowledge to mimic the production process requires extensive knowledge management, and the result might be just a good enough solution. Theoretically, spot welding sequence optimization for the optimal geometrical quality is among NP-hard combinatorial problems. In a geometry assurance digital twin, where assembly parameters are selected for the individual assemblies, time constraints define the quality of the optimal sequence. In this paper, an efficient method for spot welding sequence optimization with regards to the geometrical quality is introduced. The results indicate that the proposed method reduces 60–80% of the time for the sequencing of the spot welding process to achieve the optimal geometrical quality.


2016 ◽  
Vol 121 (1) ◽  
pp. 17-36 ◽  
Author(s):  
Jesus Romero-Hdz ◽  
Sinai Aranda ◽  
Gengis Toledo-Ramirez ◽  
Jose Segura ◽  
Baidya Saha

Author(s):  
Roham Sadeghi Tabar ◽  
Samuel Lorin ◽  
Christoffer Cromvik ◽  
Lars Lindkvist ◽  
Kristina Wärmefjord ◽  
...  

Abstract Geometrical variation is one of the sources of quality issues in a product. Spot welding is an operation that impacts the final geometrical variation of a sheet metal assembly considerably. Evaluating the outcome of the assembly, considering the existing geometrical variation between the components, can be achieved using the Method of Influence Coefficients (MIC), based on the Finite Element Method (FEM). The sequence with which the spot welding operation is performed influences the final geometrical deformations of the assembly. Finding the optimal sequence that results in the minimum geometrical deformation is a combinatorial problem that is experimentally and computationally expensive. Traditionally, spot welding sequence optimization strategies have been to simulate the geometrical variation of the spot-welded assembly after the assembly has been positioned in an inspection fixture. In this approach, the calculation of deformation after springback is one of the most time-consuming steps. In this paper, a method is proposed where the springback calculation in the inspection fixture is bypassed during the sequence evaluation. The results show a significant correlation between the proposed method of weld relative displacements evaluation in the assembly fixture and the assembly deformation in the inspection fixture. Evaluating the relative weld displacement makes each assembly simulation less time-consuming, and thereby, sequence optimization time can be reduced by up to 30%, compared to the traditional approach.


Sign in / Sign up

Export Citation Format

Share Document