thin structures
Recently Published Documents


TOTAL DOCUMENTS

209
(FIVE YEARS 38)

H-INDEX

21
(FIVE YEARS 3)

2022 ◽  
Vol 134 ◽  
pp. 650-664
Author(s):  
Yudong Zhong ◽  
Junjian Hou ◽  
Shizhe Feng ◽  
Guizhong Xie ◽  
Xinsheng Wang ◽  
...  

Fluids ◽  
2021 ◽  
Vol 6 (10) ◽  
pp. 353
Author(s):  
Julie Simons ◽  
Alexandra Rosenberger

Sperm have thin structures known as flagella whose motion must be regulated in order to reach the egg for fertilization. Large numbers of sperm are typically needed in this process and some species have sperm that exhibit collective or aggregate motion when swimming in groups. The purpose of this study is to model planar motion of flagella in groups to explore how collective motion may arise in three-dimensional fluid environments. We use the method of regularized Stokeslets and a three-dimensional preferred curvature model to simulate groups of undulating flagella, where flagellar waveforms are modulated via hydrodynamic coupling with other flagella and surfaces. We find that collective motion of free-swimming flagella is an unstable phenomenon in long-term simulations unless there is an external mechanism to keep flagella near each other. However, there is evidence that collective swimming can result in significant gains in velocity and efficiency. With the addition of an ability for sperm to attach and swim together as a group, velocities and efficiencies can be increased even further, which may indicate why some species have evolved mechanisms that enable collective swimming and cooperative behavior in sperm.


2021 ◽  
Vol 8 (3) ◽  
pp. 199-216
Author(s):  
Adel Razek

Different up-to-date utilizations have found several benefits in condensing the size of autonomous robots. Miniature traveling wave piezoelectric robots have proven to be appropriate for many of these applications. The principles of locomotion embraced in these robots are mainly inspired by natural biological locomotion and could be categorized by their movement through a specific medium. In this article, after having highlighted the amplifying effect of piezoelectric actuators generating the locomotion necessary for robotic requests, we will review the different types of such locomotion. Next, we will discuss the traveling wave piezoelectric resonant robots. Succeeding, we will look at the operation and usages of piezoelectric beam and plate robots. Finally, we will discuss the modeling aspects implicated in these robots and more generally, the modeling of piezoelectric patches stuck on thin structures. Keywords: piezoelectric, miniature, travelling-wave, locomotion, beam and plate robots


2021 ◽  
Author(s):  
Jielong Wang

Abstract This paper developed a new geometrically exact shell element to model the relatively thin structures with large deformations and arbitrary rigid motions. The deformations were well decoupled from rigid motions by using the direct modeling approach. The rotation-free Green-Lagrange strain tensor described the large deformations together with geometrical nonlinearities. Meanwhile, the Wiener-Milenković parameter was applied to vectorial parameterize the arbitrary rotations of the fiber avoiding the singularities usually occurred in the classical shell formula. This paper also designed a new interpolating algorithm without losing objectivity to discretize the vectorial parameters, which improves the robustness of new shell element. The application of Mixed Interpolation of Tensorial Components with 9 nodes (MITC9) makes the shell element shear-locking free and with second-order accuracy. Each node contains five degrees of freedom, three for translations and two for rotations, achieving a minimal set representation of arbitrary motions. These innovations contribute to a new shell formula featuring high computational efficiency with good accuracy. Finally, two flexible multibody dynamic models are discretized by this new shell element. The numerical simulation results of the new shell element have been verified to demonstrate the capability of new shell element dealing with large deformations and arbitrary motions of thin structures.


2021 ◽  
Vol 6 (3) ◽  
pp. 30
Author(s):  
Alberto Tufaile ◽  
Michael Snyder ◽  
Adriana Pedrosa Biscaia Tufaile

We studied the effects of image formation in a device known as Ferrocell, which consists of a thin film of a ferrofluid solution between two glass plates subjected to an external magnetic field in the presence of a light source. Following suggestions found in the literature, we compared the Ferrocell light scattering for some magnetic field configurations with the conical scattering of light by thin structures found in foams known as Plateau borders, and we discuss this type of scattering with the concept of diffracted rays from the Geometrical Theory of Diffraction. For certain magnetic field configurations, a Ferrocell with a point light source creates images of circles, parabolas, and hyperboles. We interpret the Ferrocell images as analogous to a Möbius transformation by inversion of the magnetic field. The formation of circles through this transformation is known as horocycles, which can be observed directly in the Ferrocell plane.


2021 ◽  
Author(s):  
Seyed Allameh ◽  
Avery Lenihan ◽  
Roger Miller ◽  
Hadi Allameh

2021 ◽  
Vol 11 (14) ◽  
pp. 6320
Author(s):  
David M. Roper ◽  
Kyung-Ah Kwon ◽  
Serena M. Best ◽  
Ruth E. Cameron

Fused filament fabrication (FFF) is an inexpensive way of producing objects through a programmed layer-by-layer deposition. For multi-layer, macro-scaled prints, acceptable printing is achieved provided, amongst other factors, first layer adhesion is sufficient to fix a part to the surface during printing. However, in the deposition of structures with a single or few layers, first layer consistency is significantly more important and is an issue that has been previously overlooked. As layer-to-bed adhesion is prioritised in first layer printing, thin layer structures are difficult to remove without damage. The deposition of controllable thin structures has potential in tissue engineering through the use of bioactive filaments and incorporation of microfeatures into complex, patient-specific scaffolds. This paper presents techniques to progress the deposition of thin, reproducible structures. The linear thickness variation of 3D-printed single PVA and PLLA layers is presented as a function of extrusion factor and the programmed vertical distance moved by the nozzle between layers (the layer separation). A sacrificial PVA layer is shown to significantly improve first layer consistency, reducing the onus on fine printer calibration in the deposition of single layers. In this way, the linear variation in printed single PLLA layers with bed deviation is drastically reduced. Further, this technique is used to demonstrate the printing of freestanding thin layers of ~25 µm in thickness.


2021 ◽  
Author(s):  
Robert F. Zueck

Abstract Analytical, experimental and computational models have historically been heavily simplified, linearized, and otherwise reduced. This paper shows how such model reductions eliminate the fundamental geometric changes that determine real behavior in cables, strings, moorings, guys, pipelines, riser, plates, skins, subsea hulls, and other such slender and thin structures. The paper details each physical quantity that we must add back into our overly reduced models to improve the basic nature, evolution, and accuracy of the resulting motions and vibrations. For example, even slight changes in local rotation anywhere along a cable can create large nonlinear changes in the dynamic nature of its behavior. The evolved complexity of the resulting global motions and vibrations in space and time often defy what we normally expect from such a simple structure. Although this paper focuses on the modeling of deep-water moorings and risers of an ocean platform, the same geometric effect is fundamental to most science and engineering models. Understanding how small changes in geometry can nonlinearly affect any structured behavior will help demystify much of the poorly-understood motions and vibrations in a large diversity of applications, including induced vibrations, sound, structural acoustics, aero-elasticity, sound, light and atomic radiation.


Sign in / Sign up

Export Citation Format

Share Document