scholarly journals Neural Regret-Matching for Distributed Constraint Optimization Problems

Author(s):  
Yanchen Deng ◽  
Runsheng Yu ◽  
Xinrun Wang ◽  
Bo An

Distributed constraint optimization problems (DCOPs) are a powerful model for multi-agent coordination and optimization, where information and controls are distributed among multiple agents by nature. Sampling-based algorithms are important incomplete techniques for solving medium-scale DCOPs. However, they use tables to exactly store all the information (e.g., costs, confidence bounds) to facilitate sampling, which limits their scalability. This paper tackles the limitation by incorporating deep neural networks in solving DCOPs for the first time and presents a neural-based sampling scheme built upon regret-matching. In the algorithm, each agent trains a neural network to approximate the regret related to its local problem and performs sampling according to the estimated regret. Furthermore, to ensure exploration we propose a regret rounding scheme that rounds small regret values to positive numbers. We theoretically show the regret bound of our algorithm and extensive evaluations indicate that our algorithm can scale up to large-scale DCOPs and significantly outperform the state-of-the-art methods.

2019 ◽  
Vol 64 ◽  
pp. 705-748 ◽  
Author(s):  
Duc Thien Nguyen ◽  
William Yeoh ◽  
Hoong Chuin Lau ◽  
Roie Zivan

Researchers have used distributed constraint optimization problems (DCOPs) to model various multi-agent coordination and resource allocation problems. Very recently, Ottens et al. proposed a promising new approach to solve DCOPs that is based on confidence bounds via their Distributed UCT (DUCT) sampling-based algorithm. Unfortunately, its memory requirement per agent is exponential in the number of agents in the problem, which prohibits it from scaling up to large problems. Thus, in this article, we introduce two new sampling-based DCOP algorithms called Sequential Distributed Gibbs (SD-Gibbs) and Parallel Distributed Gibbs (PD-Gibbs). Both algorithms have memory requirements per agent that is linear in the number of agents in the problem. Our empirical results show that our algorithms can find solutions that are better than DUCT, run faster than DUCT, and solve some large problems that DUCT failed to solve due to memory limitations.


Author(s):  
William Yeoh

Constraints have long been studied in centralized systems and have proven to be practical and efficient for modeling and solving resource allocation and scheduling problems. Slightly more than a decade ago, researchers proposed the distributed constraint optimization problem (DCOP) formulation, which is well suited for modeling distributed multi-agent coordination problems. In this paper, we highlight some of our recent contributions that are aiming towards improved expressivity of the DCOP model as well as improved scalability of the accompanying algorithms.


Author(s):  
Tiep Le ◽  
Tran Cao Son ◽  
Enrico Pontelli

This paper proposes Multi-context System for Optimization Problems (MCS-OP) by introducing conditional costassignment bridge rules to Multi-context Systems (MCS). This novel feature facilitates the definition of a preorder among equilibria, based on the total incurred cost of applied bridge rules. As an application of MCS-OP, the paper describes how MCS-OP can be used in modeling Distributed Constraint Optimization Problems (DCOP), a prominent class of distributed optimization problems that is frequently employed in multi-agent system (MAS) research. The paper shows, by means of an example, that MCS-OP is more expressive than DCOP, and hence, could potentially be useful in modeling distributed optimization problems which cannot be easily dealt with using DCOPs. It also contains a complexity analysis of MCS-OP.


2018 ◽  
Vol 61 ◽  
pp. 623-698 ◽  
Author(s):  
Ferdinando Fioretto ◽  
Enrico Pontelli ◽  
William Yeoh

The field of multi-agent system (MAS) is an active area of research within artificial intelligence, with an increasingly important impact in industrial and other real-world applications. In a MAS, autonomous agents interact to pursue personal interests and/or to achieve common objectives. Distributed Constraint Optimization Problems (DCOPs) have emerged as a prominent agent model to govern the agents' autonomous behavior, where both algorithms and communication models are driven by the structure of the specific problem. During the last decade, several extensions to the DCOP model have been proposed to enable support of MAS in complex, real-time, and uncertain environments. This survey provides an overview of the DCOP model, offering a classification of its multiple extensions and addressing both resolution methods and applications that find a natural mapping within each class of DCOPs. The proposed classification suggests several future perspectives for DCOP extensions and identifies challenges in the design of efficient resolution algorithms, possibly through the adaptation of strategies from different areas.


2017 ◽  
Vol 17 (4) ◽  
pp. 634-683
Author(s):  
TIEP LE ◽  
TRAN CAO SON ◽  
ENRICO PONTELLI ◽  
WILLIAM YEOH

AbstractThis paper explores the use ofAnswer Set Programming (ASP)in solvingDistributed Constraint Optimization Problems (DCOPs). The paper provides the following novel contributions: (1) it shows how one can formulate DCOPs as logic programs; (2) it introduces ASP-DPOP, the first DCOP algorithm that is based on logic programming; (3) it experimentally shows that ASP-DPOP can be up to two orders of magnitude faster than DPOP (its imperative programming counterpart) as well as solve some problems that DPOP fails to solve, due to memory limitations; and (4) it demonstrates the applicability of ASP in a wide array of multi-agent problems currently modeled as DCOPs.


Sign in / Sign up

Export Citation Format

Share Document