scholarly journals Learning Within an Instance for Designing High-Revenue Combinatorial Auctions

Author(s):  
Maria-Florina Balcan ◽  
Siddharth Prasad ◽  
Tuomas Sandholm

We develop a new framework for designing truthful, high-revenue (combinatorial) auctions for limited supply. Our mechanism learns within an instance. It generalizes and improves over previously-studied random-sampling mechanisms. It first samples a participatory group of bidders, then samples several learning groups of bidders from the remaining pool of bidders, learns a high-revenue auction from the learning groups, and finally runs that auction on the participatory group. Previous work on random-sampling mechanisms focused primarily on unlimited supply. Limited supply poses additional significant technical challenges, since allocations of items to bidders must be feasible. We prove guarantees on the performance of our mechanism based on a market-shrinkage term and a new complexity measure we coin partition discrepancy. Partition discrepancy simultaneously measures the intrinsic complexity of the mechanism class and the uniformity of the set of bidders. We then introduce new auction classes that can be parameterized in a way that does not depend on the number of bidders participating, and prove strong guarantees for these classes. We show how our mechanism can be implemented efficiently by leveraging practically-efficient routines for solving winner determination. Finally, we show how to use structural revenue maximization to decide what auction class to use with our framework when there is a constraint on the number of learning groups.

2021 ◽  
Vol 9 (3) ◽  
pp. 1-31
Author(s):  
Khaled Elbassioni

We consider the problem of pricing edges of a line graph so as to maximize the profit made from selling intervals to single-minded customers. An instance is given by a set E of n edges with a limited supply for each edge, and a set of m clients, where each client specifies one interval of E she is interested in and a budget B j which is the maximum price she is willing to pay for that interval. An envy-free pricing is one in which every customer is allocated an (possibly empty) interval maximizing her utility. Grandoni and Rothvoss (SIAM J. Comput. 2016) proposed a polynomial-time approximation scheme ( PTAS ) for the unlimited supply case with running time ( nm ) O ((1/ɛ) 1/ɛ ) , which was extended to the limited supply case by Grandoni and Wiese (ESA 2019). By utilizing the known hierarchical decomposition of doubling metrics , we give a PTAS with running time ( nm ) O (1/ ɛ 2 ) for the unlimited supply case. We then consider the limited supply case, and the notion of ɛ-envy-free pricing in which a customer gets an allocation maximizing her utility within an additive error of ɛ. For this case, we develop an approximation scheme with running time ( nm ) O (log 5/2 max e H e /ɛ 3 ) , where H e = B max ( e )/ B min ( e ) is the maximum ratio of the budgets of any two customers demanding edge e . This yields a PTAS in the uniform budget case, and a quasi-PTAS for the general case. The best approximation known, in both cases, for the exact envy-free pricing version is O (log c max ), where c max is the maximum item supply. Our method is based on the known hierarchical decomposition of doubling metrics, and can be applied to other problems, such as the maximum feasible subsystem problem with interval matrices.


We are interested by the problem of combinatorial auctions in which multiple items are sold and bidders submit bids on packages. First, we present a multi-objective formulation for a combinatorial auctions problem extending the existing single-objective models. Indeed, the bids may concern several specifications of the item, involving not only its price, but also its quality, delivery conditions, delivery deadlines, the risk of not being paid after a bid has been accepted and so on. The seller expresses his preferences upon the suggested items and the buyers are in competition with all the specified attributes done by the seller. Second, we develop and implement a metaheuristic algorithm based on a tabu search method.


Sign in / Sign up

Export Citation Format

Share Document