scholarly journals Numerical Solution for Two-Sided Stefan Problem

2020 ◽  
pp. 444-452
Author(s):  
M.S. Hussein ◽  
Zahraa Adil

     In this paper, we consider a two-phase Stefan problem in one-dimensional space for parabolic heat equation with non-homogenous Dirichlet boundary condition. This problem contains a free boundary depending on time. Therefore, the shape of the problem is changing with time. To overcome this issue, we use a simple transformation to convert the free-boundary problem to a fixed-boundary problem. However, this transformation yields a complex and nonlinear parabolic equation. The resulting equation is solved by the finite difference method with Crank-Nicolson scheme which is unconditionally stable and second-order of accuracy in space and time. The numerical results show an excellent accuracy and stable solutions for two test examples.

2020 ◽  
Vol 20 (2) ◽  
pp. 437-458 ◽  
Author(s):  
Félix del Teso ◽  
Jørgen Endal ◽  
Juan Luis Vázquez

AbstractThe classical Stefan problem is one of the most studied free boundary problems of evolution type. Recently, there has been interest in treating the corresponding free boundary problem with nonlocal diffusion. We start the paper by reviewing the main properties of the classical problem that are of interest to us. Then we introduce the fractional Stefan problem and develop the basic theory. After that we center our attention on selfsimilar solutions, their properties and consequences. We first discuss the results of the one-phase fractional Stefan problem, which have recently been studied by the authors. Finally, we address the theory of the two-phase fractional Stefan problem, which contains the main original contributions of this paper. Rigorous numerical studies support our results and claims.


PAMM ◽  
2007 ◽  
Vol 7 (1) ◽  
pp. 4140027-4140028
Author(s):  
Michael Hinze ◽  
Stefan Ziegenbalg

2020 ◽  
Vol 52 (4) ◽  
pp. 3397-3443
Author(s):  
Hirokazu Saito ◽  
Yoshihiro Shibata ◽  
Xin Zhang

2014 ◽  
Vol 25 (01) ◽  
pp. 165-194 ◽  
Author(s):  
M. Carme Calderer ◽  
Robin Ming Chen

In this paper, we derived a model which describes the swelling dynamics of a gel and study the system in one-dimensional geometry with a free boundary. The governing equations are hyperbolic with a weakly dissipative source. Using a mass-Lagrangian formulation, the free boundary is transformed into a fixed boundary. We prove the existence of long-time C1-solutions to the transformed fixed boundary problem.


Sign in / Sign up

Export Citation Format

Share Document