scholarly journals Asymptotic Criteria of Neutral Differential Equations with Positive and Negative Coefficients and Impulsive Integral Term

2020 ◽  
pp. 2315-2323
Author(s):  
Hussain Ali Mohamad ◽  
Aqeel Jaddoa

In this paper, the asymptotic behavior of all solutions of impulsive neutral differential equations with positive and negative coefficients and with impulsive integral term was investigated. Some sufficient conditions were obtained to ensure that all nonoscillatory solutions converge to zero. Illustrative examples were given for the main results.

2020 ◽  
Vol 17 (2) ◽  
pp. 0537
Author(s):  
Aqeel Jaddoa et al.

In this paper, some necessary and sufficient conditions are obtained to ensure the oscillatory of all solutions of the first order impulsive neutral differential equations. Also, some results in the references have been improved and generalized. New lemmas are established to demonstrate the oscillation property. Special impulsive conditions associated with neutral differential equation are submitted. Some examples are given to illustrate the obtained results.


Author(s):  
Hussain Ali Mohamad ◽  
Aqeel Falih Jaddoa

            In this paper, necessary and sufficient conditions for oscillation are obtained, so that every solution of the linear impulsive neutral differential equation with variable delays and variable coefficients oscillates. Most of authors who study the oscillatory criteria of impulsive neutral differential equations, investigate the case of constant delays and variable coefficients. However the points of impulsive in this paper are more general. An illustrate example is given to demonstrate our claim and explain the results.


2015 ◽  
Vol 21 (2) ◽  
Author(s):  
Saroj Panigrahi ◽  
Rakhee Basu

AbstractIn this paper, the authors investigated oscillatory and asymptotic behavior of solutions of a class of nonlinear higher order neutral differential equations with positive and negative coefficients. The results in this paper generalize the results of Tripathy, Panigrahi and Basu [Fasc. Math. 52 (2014), 155–174]. We establish new conditions which guarantees that every solution either oscillatory or converges to zero. Moreover, using the Banach Fixed Point Theorem sufficient conditions are obtained for the existence of bounded positive solutions. Examples are considered to illustrate the main results.


1990 ◽  
Vol 33 (4) ◽  
pp. 442-451 ◽  
Author(s):  
G. Ladas ◽  
C. Qian

AbstractWe obtain sufficient conditions for the oscillation of all solutions of the linear delay differential equation with positive and negative coefficientswhereExtensions to neutral differential equations and some applications to the global asymptotic stability of the trivial solution are also given.


2014 ◽  
Vol 11 (4) ◽  
pp. 1624-1628
Author(s):  
Baghdad Science Journal

Oscillation criterion is investigated for all solutions of the first-order linear neutral differential equations with positive and negative coefficients. Some sufficient conditions are established so that every solution of eq.(1.1) oscillate. Generalizing of some results in [4] and [5] are given. Examples are given to illustrated our main results.


2018 ◽  
Vol 68 (6) ◽  
pp. 1385-1396 ◽  
Author(s):  
Arun Kumar Tripathy ◽  
Rashmi Rekha Mohanta

Abstract In this paper, several sufficient conditions for oscillation of all solutions of fourth order functional differential equations of neutral type of the form $$\begin{array}{} \displaystyle \bigl(r(t)(y(t)+p(t)y(t-\tau))''\bigr)''+q(t)G\bigl(y(t-\sigma)\bigr)=0 \end{array}$$ are studied under the assumption $$\begin{array}{} \displaystyle \int\limits^{\infty}_{0}\frac{t}{r(t)}{\rm d} t =\infty \end{array}$$


2001 ◽  
Vol 32 (3) ◽  
pp. 201-209 ◽  
Author(s):  
E. Thandapani ◽  
B. Ponnammal

The authors consider the two-dimensional difference system$$ \Delta x_n = b_n g (y_n) $$ $$ \Delta y_n = -f(n, x_{n+1}) $$where $ n \in N(n_0) = \{ n_0, n_0+1, \ldots \} $, $ n_0 $ a nonnegative integer; $ \{ b_n \} $ is a real sequence, $ f: N(n_0) \times {\rm R} \to {\rm R} $ is continuous with $ u f(n,u) > 0 $ for all $ u \ne 0 $. Necessary and sufficient conditions for the existence of nonoscillatory solutions with a specified asymptotic behavior are given. Also sufficient conditions for all solutions to be oscillatory are obtained if $ f $ is either strongly sublinear or strongly superlinear. Examples of their results are also inserted.


2004 ◽  
Vol 1 (2) ◽  
pp. 347-349 ◽  
Author(s):  
Baghdad Science Journal

The author obtain results on the asymptotic behavior of the nonoscillatory solutions of first order nonlinear neutral differential equations. Keywords. Neutral differential equations, Oscillatory and Nonoscillatory solutions.


2012 ◽  
Vol 616-618 ◽  
pp. 2137-2141
Author(s):  
Zhi Min Luo ◽  
Bei Fei Chen

This paper studied the asymptotic behavior of a class of nonlinear functional differential equations by using the Bellman-Bihari inequality. We obtain results which extend and complement those in references. The results indicate that all non-oscillatory continuable solutions of equation are asymptotic to at+b as under some sufficient conditions, where a,b are real constants. An example is provided to illustrate the application of the results.


Sign in / Sign up

Export Citation Format

Share Document