scholarly journals PENDUGAAN EROSI TANAH PADA LAHAN BEKAS TAMBANG BATU BINTANG SUB DAS BATANG KALULUTAN DAN SUNGAI IPUH KABUPATEN PADANG PARIAMAN

Jurnal Solum ◽  
2008 ◽  
Vol 5 (2) ◽  
pp. 88
Author(s):  
Adrinal Adrinal ◽  
Utri Luki ◽  
Pedri Kasman

An erosion prediction using Universal Soil Loss Equation (USLE) was conducted from August 2006 to February 2007.  The research was aimed to predict amount of soil erosion and erosion risk rate of ex-obsidian mining of Kalulutan and Ipuh River, Padang Pariaman District.  The result showed that the highest soil erosion was predicted under ex-obsidian mining (45% slope) namely 2.593 t/ha/y and the lowest was found under mixed farm (3-8% slope), 4,95 t/ha/y. Erosion risk rate of ex-obsidian mining was very heavy whilst for mixed farm varied from light to very heavy.   Keyword: erosion prediction, ex-obsidian mining, Sub-catchments area

2011 ◽  
Vol 399 (3-4) ◽  
pp. 263-273 ◽  
Author(s):  
Soyoung Park ◽  
Cheyoung Oh ◽  
Seongwoo Jeon ◽  
Huicheul Jung ◽  
Chuluong Choi

2020 ◽  
Author(s):  
Veera Narayana Balabathina ◽  
Raju RP ◽  
Wuletaw Mulualem ◽  
Gedefaw Tadele

Abstract Background: Soil erosion, one of the major environmental challenges, is influenced by topography, climate, soil characteristics, and human activities and has a significant impact on potential land productivity and food security in many highland regions of Ethiopia. The present study attempts to estimate soil erosion risk in the Northern catchment of Lake Tana basin, situated in northwest part of Ethiopia, with available data through the application of the Universal Soil Loss Equation model integrated with Geographic Information System and remote sensing technologies to identify priority areas for controlling soil erosion. In addition, it analyzes the effect of land use and land cover, topography, erodibility, and drainage density on soil erosion potential of the catchment, and the possible relationships among them. Results: The results show that the mean annual soil loss of catchment is estimated at 37.89 ± 59.2 t ha−1yr−1 with a total annual soil loss of 1,705,370 tons. The topography (LS-factor), followed by the support practice (P-factor) and the soil erodibility (K-factor) were the most sensitive factors affecting soil erosion in the catchment. To identify high priority areas for management, the study area was subdivided into five major sub-basins and further categorized into five erosion classes based on erosion severity. The mean soil erosion rates of the Derma, Megech, Gumara, Garno, and Gabi Kura River sub-basins are 46.8, 40.98, 30.95, 30.04, and 29.66 t ha−1yr−1, respectively. About 58.9% of the area was found in very low erosion risk which extends from 0-1 t ha−1yr−1 and accounted only 1.1% of total soil loss, while 12.4% of the area was found to be under high and extreme erosion risk with erosion rates of 10 t ha−1yr−1 or more that contributes about 82.1% of total soil loss warrant high priority for reducing the risk of soil erosion. Conclusions: This study permits the understanding of the soil erosion process and the various factors that lead to the spatial variability of the risk in the catchment, and thus enhances the effectiveness of proposed conservation strategies for sustainable land management.


2017 ◽  
Vol 32 (1) ◽  
pp. 13-23 ◽  
Author(s):  
Hamza Bouguerra ◽  
Abderrazak Bouanani ◽  
Kamel Khanchoul ◽  
Oussama Derdous ◽  
Salah Eddine Tachi

Abstract Soil erosion by water is a major problem that the Northern part of Algeria witnesses nowadays; it reduces: the productivity of agricultural areas due to the loss of lands, and leads to the loss of storage capacity in reservoirs, the deterioration of water quality etc. The aim of this study is to evaluate the soil losses due to water erosion, and to identify the sectors which are potentially sensitive to water erosion in the Bouhamdane watershed, that is located in the northeastern part of Algeria. To this end, the Revised Universal Soil Loss Equation (RUSLE) was used. The application of this equation takes into account five parameters, namely the rainfall erosivity, topography, soil erodibility, vegetative cover and erosion control practices. The product of these parameters under GIS using the RUSLE mathematical equation has enabled evaluating an annual average erosion rate for the Bouhamdane watershed of 11.18 t·ha-1·y-1. Based on the estimates of soil loss in each grid cell, a soil erosion risk map with five risk classes was elaborated. The spatial distribution of risk classes was 16% very low, 41% low, 28% moderate, 12% high and 3% very high. Most areas showing high and very high erosion risk occurred in the lower Bouhamdane watershed around Hammam Debagh dam. These areas require adequate erosion control practices to be implemented on a priority basis in order to conserve soil resources and reduce siltation in the reservoir.


Sign in / Sign up

Export Citation Format

Share Document