soil erosion risk
Recently Published Documents


TOTAL DOCUMENTS

197
(FIVE YEARS 54)

H-INDEX

31
(FIVE YEARS 4)

2021 ◽  
Vol 23 (2) ◽  
pp. 15-27
Author(s):  
Tariq Hama Karim ◽  
◽  
Kamal Sharif Qadir ◽  
Danya Omer Mohammed ◽  
◽  
...  

2021 ◽  
Vol 13 (21) ◽  
pp. 4360
Author(s):  
Andrew K. Marondedze ◽  
Brigitta Schütt

Monitoring urban area expansion through multispectral remotely sensed data and other geomatics techniques is fundamental for sustainable urban planning. Forecasting of future land use land cover (LULC) change for the years 2034 and 2050 was performed using the Cellular Automata Markov model for the current fast-growing Epworth district of the Harare Metropolitan Province, Zimbabwe. The stochastic CA–Markov modelling procedure validation yielded kappa statistics above 80%, ascertaining good agreement. The spatial distribution of the LULC classes CBD/Industrial area, water and irrigated croplands as projected for 2034 and 2050 show slight notable changes. For projected scenarios in 2034 and 2050, low–medium-density residential areas are predicted to increase from 11.1 km2 to 12.3 km2 between 2018 and 2050. Similarly, high-density residential areas are predicted to increase from 18.6 km2 to 22.4 km2 between 2018 and 2050. Assessment of the effects of future climate change on potential soil erosion risk for Epworth district were undertaken by applying the representative concentration pathways (RCP4.5 and RCP8.5) climate scenarios, and model ensemble averages from multiple general circulation models (GCMs) were used to derive the rainfall erosivity factor for the RUSLE model. Average soil loss rates for both climate scenarios, RCP4.5 and RCP8.5, were predicted to be high in 2034 due to the large spatial area extent of croplands and disturbed green spaces exposed to soil erosion processes, therefore increasing potential soil erosion risk, with RCP4.5 having more impact than RCP8.5 due to a higher applied rainfall erosivity. For 2050, the predicted wide area average soil loss rates declined for both climate scenarios RCP4.5 and RCP8.5, following the predicted decline in rainfall erosivity and vulnerable areas that are erodible. Overall, high potential soil erosion risk was predicted along the flanks of the drainage network for both RCP4.5 and RCP8.5 climate scenarios in 2050.


Land ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1056
Author(s):  
Albert Poponi Maniraho ◽  
Richard Mind’je ◽  
Wenjiang Liu ◽  
Vincent Nzabarinda ◽  
Patient Mindje Kayumba ◽  
...  

Land use and land cover (LULC) management influences the severity of soil erosion risk. However, crop management (C) is one factor of the Revised Universal Soil Loss Equation (RUSLE) model that should be taken into account in its determination, as it influences soil loss rate estimations. Thus, the present study applied an adapted C-factor estimation approach (CvkA) modified from the former approach (Cvk) to assess the impact of LULC dynamics on soil erosion risk in an agricultural area of Rwanda taking the western province as a case study. The results disclosed that the formerly used Cvk was not suitable, as it tended to overestimate C-factor values compared with the values obtained from t CvkA. An approximated mean soil loss of 15.1 t ha−1 yr−1, 47.4 t ha−1 yr−1, 16.3 t ha−1 yr−1, 66.8 t ha−1 yr−1 and 15.3 t ha−1 yr−1 in 2000, 2005, 2010, 2015 and 2018, respectively, was found. The results also indicated that there was a small increase in mean annual soil loss from 15.1 t ha−1 yr−1 in 2000 to 15.3 t ha−1 yr−1 in 2018 (1.3%). Moreover, the soil erosion risk categories indicated that about 57.5%, 21.8%, 64.9%, 15.5% and 73.8% had a sustainable soil erosion rate tolerance (≤10 t ha−1 yr−1), while about 42.5%, 78.2%, 35.1%, 84.5% and 16.8% had an unsustainable mean soil erosion rate (>10 t ha−1 yr−1) in 2000, 2005, 2010, 2015 and 2018, respectively. A major portion of the area fell under the high and very high probability zones, whereas only a small portion fell under the very low, low, moderate and extremely high probability zones. Therefore, the CvkA approach presents the most suitable alternative to estimate soil loss in the western province of Rwanda with reasonable soil loss prediction results. The study area needs urgent intervention for soil conservation planning, taking into account the implementation of effective conservation practices such as terracing for soil erosion control.


2021 ◽  
pp. 1-24
Author(s):  
Nirmal Kumar ◽  
Sudhir Kumar Singh ◽  
Amit Kumar Dubey ◽  
Ram L. Ray ◽  
Sk. Mustak ◽  
...  

2021 ◽  
pp. 781-790
Author(s):  
Mohd Talha Anees ◽  
Ahmad Farid Bin Abu Bakar ◽  
Mohammad Zaid

Sign in / Sign up

Export Citation Format

Share Document