Steady Reynolds-Averaged Navier–Stokes Equation-Based Buffeting Loads Estimation

AIAA Journal ◽  
2017 ◽  
Vol 55 (6) ◽  
pp. 1920-1929
Author(s):  
Tom Chyczewski
Author(s):  
Woochan Seok ◽  
Sang Bong Lee ◽  
Shin Hyung Rhee

This study concerns the characteristics of the partially averaged Navier–Stokes method for local flow analysis around a rotating propeller. Partially averaged Navier–Stokes, resolving crucial large-scale structures of turbulent flow at a given computational grid resolution, is a bridging turbulence closure model between the Reynolds-averaged Navier–Stokes equation and the direct numerical simulation. A detailed comparison between partially averaged Navier–Stokes and Reynolds-averaged Navier–Stokes models is made to achieve a better understanding of partially averaged Navier–Stokes characteristics for predicting the coherent structures in turbulent flow. The two-equation k-ω shear stress transport model and the seven-equation Reynolds stress model are selected for Reynolds-averaged Navier–Stokes computations. The problem of interest is the flow around a rotating KP505 propeller in open water conditions at an advance ratio of 0.7. Near the leading edge, the partially averaged Navier–Stokes results are similar to those of Reynolds stress model in terms of the vortical structures. Vorticity predicted by different turbulence models, however, shows significant differences. For a more detailed analysis, the velocity gradient constituting the vorticity is identified at the leading edge. It is proven that partially averaged Navier–Stokes is able to capture the anisotropic characteristics of the flow at the leading edge, where both the geometric and flow characteristics change abruptly.


1998 ◽  
Vol 115 (1) ◽  
pp. 18-24 ◽  
Author(s):  
G.W. Wei ◽  
D.S. Zhang ◽  
S.C. Althorpe ◽  
D.J. Kouri ◽  
D.K. Hoffman

Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 288
Author(s):  
Alexei Kushner ◽  
Valentin Lychagin

The first analysis of media with internal structure were done by the Cosserat brothers. Birkhoff noted that the classical Navier–Stokes equation does not fully describe the motion of water. In this article, we propose an approach to the dynamics of media formed by chiral, planar and rigid molecules and propose some kind of Navier–Stokes equations for their description. Examples of such media are water, ozone, carbon dioxide and hydrogen cyanide.


Sign in / Sign up

Export Citation Format

Share Document