Correction: Favre-Averaged Nonlinear Harmonic Method for Compressible Periodic Flows

AIAA Journal ◽  
2020 ◽  
Vol 58 (11) ◽  
pp. AU10-AU10 ◽  
Author(s):  
Feng Wang ◽  
Luca di Mare
AIAA Journal ◽  
2019 ◽  
Vol 57 (3) ◽  
pp. 1133-1142 ◽  
Author(s):  
Feng Wang ◽  
Luca di Mare

2012 ◽  
Vol 9 (1) ◽  
pp. 94-97
Author(s):  
Yu.A. Itkulova

In the present work creeping three-dimensional flows of a viscous liquid in a cylindrical tube and a channel of variable cross-section are studied. A qualitative triangulation of the surface of a cylindrical tube, a smoothed and experimental channel of a variable cross section is constructed. The problem is solved numerically using boundary element method in several modifications for a periodic and non-periodic flows. The obtained numerical results are compared with the analytical solution for the Poiseuille flow.


2021 ◽  
Vol 95 (5) ◽  
Author(s):  
Cheng Chen ◽  
Shaofeng Bian ◽  
Motao Huang

Author(s):  
Yongxing Gong ◽  
Fengqiu Xu ◽  
Xianze Xu ◽  
Kaiyang Zhang

Precision machining fields require the worktable to have a large-scale multi-degree-of-freedom motion capability. In order to provide a more accurate magnetic model for the control strategy decoupling process and the size parameter optimization design process of the maglev rotary table. This paper proposes a new magnetic modeling method based on the Two-Dimensional Harmonic method. Different from the existing harmonic method, this method simultaneously considers the tangential and radial magnetic field changes of circumferential magnetic array. And it eliminates the edge effect of the magnetic flux density distribution in the radial aperiodic direction. The magnetic force and torque are solved by the Lorenz integral formula and the Gaussian quadrature method. In order to verify the accuracy of the TDH method, the boundary element software RadiaTM is used for simulation, and a prototype is made for measurement. The experimental results shown that this method reduced the maximum error of the radial edge magnetic field from 104.19% to 3.29%. And it improved the calculation accuracy of magnetic force and torque by 60.74% and 84.39% respectively. This method does not rely on special example, and is beneficial to cross-platform applications. It is more suitable for realizing the magnetic modeling of the maglev rotary table with both rotational motion and large-stroke translational motion.


Sign in / Sign up

Export Citation Format

Share Document