rotary table
Recently Published Documents


TOTAL DOCUMENTS

276
(FIVE YEARS 65)

H-INDEX

12
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Joseph H. Frantz ◽  
Matthew L. Tourigny

Abstract Coiled tubing units (CTU) have been used to drill-out frac plugs in shorter horizontal shale wells for the last decade, but coil has mechanical limitations. The new innovative technology of Hydraulic Completion Snubbing Units (HCU) is gaining popularity across North and South America to drill-out frac plugs in long lateral, high-pressure, and multi-well pads. The HCU is designed for drill-outs and interventions where coil may not be the best option. This paper will summarize the recent evolution of the HCU system. Case histories will be provided from the Appalachian and Permian shale plays. The latest HCU consists of a stand-alone unit that mounts on the wellhead after completion. The primary components include the jack assembly, a gin pole, traveling/stationary slips, a redundant series of primary/secondary blowout preventers, a rotary table, power tongs, and an equalize/bleed off loop. Tubing up to 5 ½" is used to carry a downhole motor, dual back pressure values, and the drill bit. Slickwater is used for the drilling fluid to carry out parts from the frac plugs while the tubing is rotated via the jack rotary table. Torque and drag modeling are performed to guide downhole expectations that allow most wells to be drilled in one trip and with one bit without short trips back to the heel or bottom- hole vibration assembly tools. Finally, a remote telemetry data acquisition system has been added that summarizes the drilling data and key performance indicators. In 2016, a North American operator drilled and completed the first super lateral in the Appalachian Basin, setting the completed lateral record at over 18,500 ft. Since then, many operators have been routinely drilling laterals between 12,000 ft and 16,000 ft. HCU technology has been used in the longest laterals in onshore North America, including the lower 48 U.S records for completed lateral length (LL) at 20,800 ft and the total measured depth (MD) record at 30,677 ft. The average lateral contains between 60 to 90 plugs and can be drilled out in 3.5 to 4.5 days. The record number of plugs drilled out by an HCU is 144 and took 5.2 days. High-pressure wells are also routinely encountered where pressures range from 3000 to 8000 psi during operations. Operators are achieving faster drilling times per plug, less chemical usage, faster moves between wells, and running tubing immediately after the drill-out, thus eliminating the need for a service rig. Operator's desire to reach total depth with the least risk and as cost-efficiently as possible resulted in the HCU gaining market acceptance. This paper will showcase the novel evolution of the HCU system that has enabled it to be a safe and effective option for interventions outside of just frac plug drill-outs such as fishing for stuck/parted coil or wireline and installing production tubing/artificial lift systems.


2021 ◽  
pp. 193-202
Author(s):  
Jingxin Sun ◽  
Liqin Yang ◽  
Baohui Xu ◽  
Yuming Guo ◽  
Qingliang Cui ◽  
...  

This critical collision damage force of millet and sweet buckwheat grain and the shelling force of shelled granular materials are important basic data for research of threshing and shelling technology and equipment. In order to master the linear velocity and collision force of grain with different moisture content when collision damage occurs, a centrifugal collision test device is designed. Based on the dynamic and kinematic analysis of grain in the centrifugal rotary table, the collision force between grain and steel plate was measured by PVDF piezoelectric pressure sensor and data acquisition system. The results showed that: under the same moisture content, the higher the rotational speed, the higher the grain crushing rate; at the same rotational speed, with the increase of moisture content, the crushing rate first decreased and then increased. When the moisture content of Jingu-21 and Yuqiao-4 is 19.7% and 17.8%, respectively, the grain crushing rate was the lowest. In terms of the anti-collision ability of grain, the optimum moisture content of threshing is between 19.7% and 21% for millet. For sweet buckwheat, the optimum moisture content of threshing is 17.8% ~19%, while the optimum moisture content of shelling by centrifugal sheller is about 11%. The faster the rotational speed of centrifugal rotary table is, the greater the linear speed of grain is, and the greater the collision force is. When the linear velocity of grain was 8.32 m/s and 11.30 m/s respectively, the millet grain moisture content was 11.1% and 20.9% respectively, damage began to appear, and the corresponding collision force was about 5.51 N and 10.6 N, respectively. When the linear velocity of grain was 8.32 m/s and 11.30m/s respectively, and the moisture content was 11.1% and 22.8% of the sweet buckwheat grain respectively, damage began to appear, the corresponding collision force was about 8.92 N and 12.79 N, respectively. When the rotating speed of rotary table was 910 r/min, the linear speed of grain was 27.05 m/s, the crushing rate of millet and sweet buckwheat grain in harvest period were 56.30% and 63.76%, respectively, and the crushing rate of millet and buckwheat grain with 11.1% moisture content were 86.27% and 89.4%, respectively. The research results can provide theoretical basis for design and optimization of millet and sweet buckwheat combine harvester, threshing device and shelling device.


Author(s):  
Jun Zha

Abstract The laser tracer multi-station measurement method has outstanding performance in computerized numerical control (CNC) rotary table geometric error measurement and separation. However, external factors, such as layout, selected distance between the target mirror and measurement coordinate system, uncertainty of the length measurement, selection of measuring radii for the rotary table, and installation deviation from the target mirror center to the rotary table surface, have negative effects on the results. In this research, the position dilution of precision in the global positioning system measurement process is introduced to evaluate the influence of the laser tracers’ positions on measurement errors. The optimal measurement layout of the laser tracer is used to select the distance between the target mirror and XY plane of the laser tracer measurement coordinate system for the simulation. Then, the influence of the length measurement uncertainty on the laser tracer self-calibration and point measurement results used for calibration is examined based on the Monte Carlo simulation method. Different measurement radii in the rotary table are selected, and four-station laser tracers are used to perform the virtual measurement and evaluate the maximum uncertainty in the X, Y, and Z directions to further determine the best measurement radii of the CNC rotary table. Finally, the effects of the deviation of the target mirror installation center on the geometric error items of the CNC rotary table are quantitatively examined through a simulation. The analysis of the influencing factors in the geometric error measurement and separation process of the CNC rotary table can help further understand how the final results are formed, so as to control the influencing factors during the measurement process and finally optimize them in practice.


2021 ◽  
Vol 11 (17) ◽  
pp. 8213
Author(s):  
Janez Gotlih ◽  
Miran Brezocnik ◽  
Timi Karner

Deburring is recognized as an ideal technology for robotic automation. However, since the low stiffness of the robot can affect the deburring quality and the performance of an industrial robot is generally inhomogeneous over its workspace, a cell setup must be found that allows the robot to track the toolpath with the desired performance. In this work, the problems of robotic deburring are addressed by integrating components commonly used in the machining industry. A rotary table is integrated with the robotic deburring cell to increase the effective reach of the robot and enable it to machine a large workpiece. A genetic algorithm (GA) is used to optimize the placement of the workpiece based on the stiffness of the robot, and a local minimizer is used to maximize the stiffness of the robot along the deburring toolpath. During cutting motions, small table rotations are allowed so that the robot maintains high stiffness, and during non-cutting motions, large table rotations are allowed to reposition the workpiece. The stiffness of the robot is modeled by an artificial neural network (ANN). The results confirm the need to optimize the cell setup, since many optimizers cannot track the toolpath, while for the successful optimizers, a performance imbalance occurs along the toolpath.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5343
Author(s):  
Tomáš Kot ◽  
Zdenko Bobovský ◽  
Dominik Heczko ◽  
Aleš Vysocký ◽  
Ivan Virgala ◽  
...  

The article describes a method of simulated 3D scanning of triangle meshes based on ray casting which is used to find the optimal configuration of a real 3D scanner turntable. The configuration include the number of scanners, their elevation above the rotary table and the number of required rotation steps. The evaluation is based on the percentage of the part surface covered by the resulting point cloud, which determines the ability to capture all details of the shape. Principal component analysis is used as a secondary criterion to also evaluate the ability to capture the overall general proportions of the model.


2021 ◽  
Author(s):  
Ryosuke Sato ◽  
Islam Khaled Abdelkarim ◽  
Abdul Rahman Hasan Albeshr ◽  
Takahiro Toki ◽  
Salim Abdalla Al Ali ◽  
...  

Abstract Slot recovery operation can be considered as one of the most time consuming operation. Cut and pull casings, or milling casings have been carried out as typical method of slot recovery. However there are a lot of risks with this typical method such as poor progress of milling, damaging top drive due to high vibration while milling or sudden string jumping up while overpulling and possibility of string stuck caused by poor hole cleaning while milling. We have completed slot recovery operations on numbers of wells, but there were a lot of troubles caused by above mentioned adversaries on rig equipment and taking a lot of time to complete operation. There are several kinds of new slot recovery technologies that may save rig time and less harmful than conventional method. Casing Pulling Tool (CPT) is one of the new technologies which eliminates or mitigates risks mentioned above. CPT has piston internally and it is activated by applying pressure inside string. CPT is run with casing spear and drill pipes. Once spear is engaged with casing and apply pressure inside drill string, CPT provides pulling force on casing. Pulling force is varied depend on the applied pressure and maximum available pulling force is more than 1,000 kips. Hence upper part of string is anchored at rotary table by slips, pulling force is applied on casing and drill string below rotary table. This means no pulling force is applied on top drive and minimize the chance of getting damage on it. As an actual case, we could successfully recover 13-3/8" casing by CPT without having any troubles and complete slot recovery operation with saving rig time compared to the conventional methods. This paper introduces the details about the case mentioned above.


Sign in / Sign up

Export Citation Format

Share Document