Compressible Boundary-Layer Equations Solved by the Method of Parametric Differentiation

AIAA Journal ◽  
1972 ◽  
Vol 10 (8) ◽  
pp. 1085-1086 ◽  
Author(s):  
C. L. NARAYANA ◽  
P. RAMAMOORTHY
1967 ◽  
Vol 89 (4) ◽  
pp. 281-288 ◽  
Author(s):  
V. D. Blankenship ◽  
P. M. Chung

The coupling between the inviscid flow and the compressible boundary layer in the developing entrance region for internal flows is analyzed by solving the particular inviscid flow-boundary layer interaction problem. The interaction problem is solved by postulating certain series forms of solutions for the inviscid region and the boundary layer. The boundary-layer equations and inviscid-flow equations are perturbed to third order and each generated equation is solved numerically. In order to preserve the universality of each of the perturbed boundary-layer equations, the perturbation parameter is described by an integral equation which is also solved in series form. The final results describing the interaction problem are then constructed for any given conditions by forming the three series to a consistent order of magnitude. This technique of coordinate perturbation is generalized to show how it may be applied to the entrance regions of pipe flows, including mass injection or suction, and also to the laminar boundary layers in shock tube flows. It demonstrates analytically the manner in which the boundary layer and inviscid flow interact and create a streamwise pressure gradient. In particular, the interaction problem which occurs in shock tube flows is solved in detail by the use of this generalized method, as an example.


1967 ◽  
Vol 63 (3) ◽  
pp. 889-907 ◽  
Author(s):  
J. A. D. Ackroyd

SummaryThe laminar compressible boundary layer induced by the passage of a plane shock wave over a flat wall is examined in detail. Use is made of the empirical viscosity-temperature relationship μ ∝ Tω. The boundary-layer equations are solved numerically for various values of the index ω, Prandtl number and shock strengths. The resulting solutions are then used to construct simple semi-empirical relationships for some of the more important boundary-layer parameters.


AIAA Journal ◽  
1987 ◽  
Vol 25 (4) ◽  
pp. 525-526
Author(s):  
Bernard Loyd ◽  
Earll M. Murman

1968 ◽  
Vol 34 (2) ◽  
pp. 337-342 ◽  
Author(s):  
J. B. Mcleod ◽  
J. Serrin

This paper discusses the mathematical properties of similar solutions of the boundary-layer equations in a compressible model fluid, under assumptions first introduced by Stewartson and by Li & Nagamatsu. Assuming a favourable pressure gradient and that backflow is not present, our results include (among other things) a rigorous proof that velocity overshoot occurs in the boundary layer if the wall is heated, and that this is true whether or not suction, blowing or slipping occurs at the wall; while, conversely, velocity overshoot does not occur when the wall is cooled and the amount of slipping at the wall is suitably restricted.


Sign in / Sign up

Export Citation Format

Share Document