pressure gradient
Recently Published Documents


TOTAL DOCUMENTS

5095
(FIVE YEARS 958)

H-INDEX

100
(FIVE YEARS 10)

Fluids ◽  
2022 ◽  
Vol 7 (1) ◽  
pp. 35
Author(s):  
Ming Teng ◽  
Ugo Piomelli

The development of secondary instabilities in a boundary layer over a backward-facing step is investigated numerically. Two step heights are considered, h/δo*=0.5 and 1.0 (where δo* is the displacement thickness at the step location), in addition to a reference flat-plate case. A case with a realistic freestream-velocity distribution is also examined. A controlled K-type transition is initiated using a narrow ribbon upstream of the step, which generates small and monochromatic perturbations by periodic blowing and suction. A well-resolved direct numerical simulation is performed. The step height and the imposed freestream-velocity distribution exert a significant influence on the transition process. The results for the h/δo*=1.0 case exhibit a rapid transition primarily due to the Kelvin–Helmholtz instability downstream of step; non-linear interactions already occur within the recirculation region, and the initial symmetry and periodicity of the flow are lost by the middle stage of transition. In contrast, case h/δo*=0.5 presents a transition road map in which transition occurs far downstream of the step, and the flow remains spatially symmetric and temporally periodic until the late stage of transition. A realistic freestream-velocity distribution (which induces an adverse pressure gradient) advances the onset of transition to turbulence, but does not fundamentally modify the flow features observed in the zero-pressure gradient case. Considering the budgets of the perturbation kinetic energy, both the step and the induced pressure-gradient increase, rather than modify, the energy transfer.


2022 ◽  
Author(s):  
Yue Ming ◽  
Deng Zhou ◽  
Jinfang Wang

Abstract The effect of equilibrium poloidal flow and pressure gradient on the m/n = 2/1 (m is the poloidal mode number and n is the toroidal mode number) tearing mode instability for tokamak plasmas is investigated. Based on the condition of ≠0 ( is plasma pressure), the radial part of motion equation is derived and approximately solved for large poloidal mode numbers (m). By solving partial differential equation (Whittaker equation) containing second order singularity, the tearing mode stability index Δ′ is obtained. It is shown that, the effect of equilibrium poloidal flow and pressure gradient has the adverse effect on the tearing mode instability when the pressure gradient is nonzero. The poloidal equilibrium flow with pressure perturbation partially reduces the stability of the classical tearing mode. But the larger pressure gradient in a certain poloidal flow velocity range can abate the adverse influence of equilibrium poloidal flow and pressure gradient. The numerical results do also indicate that the derivative of pressure gradient has a significant influence on the determination of instability region of the poloidal flow with pressure perturbation.


2022 ◽  
Author(s):  
Danny Fritsch ◽  
Vidya Vishwanathan ◽  
Christopher J. Roy ◽  
Todd Lowe ◽  
William J. Devenport ◽  
...  

2022 ◽  
Author(s):  
Shishir Damani ◽  
Humza Butt ◽  
Jarrod T. Banks ◽  
Surabhi Srivastava ◽  
N. Agastya Balantrapu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document