A modified square-root information filter and smoother with infrequent time updates

1987 ◽  
Author(s):  
RICHARD MOHR
2016 ◽  
Vol 39 (4) ◽  
pp. 579-588 ◽  
Author(s):  
Yulong Huang ◽  
Yonggang Zhang ◽  
Ning Li ◽  
Lin Zhao

In this paper, a theoretical comparison between existing the sigma-point information filter (SPIF) framework and the unscented information filter (UIF) framework is presented. It is shown that the SPIF framework is identical to the sigma-point Kalman filter (SPKF). However, the UIF framework is not identical to the classical SPKF due to the neglect of one-step prediction errors of measurements in the calculation of state estimation error covariance matrix. Thus SPIF framework is more reasonable as compared with UIF framework. According to the theoretical comparison, an improved cubature information filter (CIF) is derived based on the superior SPIF framework. Square-root CIF (SRCIF) is also developed to improve the numerical accuracy and stability of the proposed CIF. The proposed SRCIF is applied to a target tracking problem with large sampling interval and high turn rate, and its performance is compared with the existing SRCIF. The results show that the proposed SRCIF is more reliable and stable as compared with the existing SRCIF. Note that it is impractical for information filters in large-scale applications due to the enormous computational complexity of large-scale matrix inversion, and advanced techniques need to be further considered.


2019 ◽  
Vol 15 (12) ◽  
pp. 155014771989595
Author(s):  
Jun Liu ◽  
Yu Liu ◽  
Kai Dong ◽  
Ziran Ding ◽  
You He ◽  
...  

To handle nonlinear filtering problems with networked sensors in a distributed manner, a novel distributed hybrid consensus–based square-root cubature quadrature information filter is proposed. The proposed hybrid consensus–based square-root cubature quadrature information filter exploits fifth-order spherical simplex-radial quadrature rule to tackle system nonlinearities and incorporates a novel measurement update strategy into the hybrid consensus filtering framework, which takes the predicted measurement error into account and hence produces more accurate estimates. In addition, the proposed hybrid consensus–based square-root cubature quadrature information filter inherits the complementary positive features of both consensus on information and consensus on measurements methods and avoids sensitive matrix operations such as square-root decompositions and inversion of covariances, which is beneficial for numerical stability. Stability analysis with respect to consensus, convergence, and consistency for the proposed hybrid consensus–based square-root cubature quadrature information filter is also developed. The effectiveness of the proposed hybrid consensus–based square-root cubature quadrature information filter is validated through a maneuvering target tracking scenario. The simulation results show that the proposed hybrid consensus–based square-root cubature quadrature information filter outperforms the existing algorithms at the expense of a slight increase in computational cost.


GPS Solutions ◽  
2019 ◽  
Vol 23 (2) ◽  
Author(s):  
Xiaolei Dai ◽  
Yidong Lou ◽  
Zhiqiang Dai ◽  
Yun Qing ◽  
Min Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document