An application of the square-root information filter to large scale linear interconnected systems

1978 ◽  
Vol 23 (1) ◽  
pp. 91-93 ◽  
Author(s):  
G. Bierman
2016 ◽  
Vol 39 (4) ◽  
pp. 579-588 ◽  
Author(s):  
Yulong Huang ◽  
Yonggang Zhang ◽  
Ning Li ◽  
Lin Zhao

In this paper, a theoretical comparison between existing the sigma-point information filter (SPIF) framework and the unscented information filter (UIF) framework is presented. It is shown that the SPIF framework is identical to the sigma-point Kalman filter (SPKF). However, the UIF framework is not identical to the classical SPKF due to the neglect of one-step prediction errors of measurements in the calculation of state estimation error covariance matrix. Thus SPIF framework is more reasonable as compared with UIF framework. According to the theoretical comparison, an improved cubature information filter (CIF) is derived based on the superior SPIF framework. Square-root CIF (SRCIF) is also developed to improve the numerical accuracy and stability of the proposed CIF. The proposed SRCIF is applied to a target tracking problem with large sampling interval and high turn rate, and its performance is compared with the existing SRCIF. The results show that the proposed SRCIF is more reliable and stable as compared with the existing SRCIF. Note that it is impractical for information filters in large-scale applications due to the enormous computational complexity of large-scale matrix inversion, and advanced techniques need to be further considered.


2019 ◽  
Vol 41 (13) ◽  
pp. 3612-3625 ◽  
Author(s):  
Wang Qian ◽  
Wang Qiangde ◽  
Wei Chunling ◽  
Zhang Zhengqiang

The paper solves the problem of a decentralized adaptive state-feedback neural tracking control for a class of stochastic nonlinear high-order interconnected systems. Under the assumptions that the inverse dynamics of the subsystems are stochastic input-to-state stable (SISS) and for the controller design, Radial basis function (RBF) neural networks (NN) are used to cope with the packaged unknown system dynamics and stochastic uncertainties. Besides, the appropriate Lyapunov-Krosovskii functions and parameters are constructed for a class of large-scale high-order stochastic nonlinear strong interconnected systems with inverse dynamics. It has been proved that the actual controller can be designed so as to guarantee that all the signals in the closed-loop systems remain semi-globally uniformly ultimately bounded, and the tracking errors eventually converge in the small neighborhood of origin. Simulation example has been proposed to show the effectiveness of our results.


Author(s):  
Ezzeddine Touti ◽  
Ali Sghaier Tlili ◽  
Muhannad Almutiry

Purpose This paper aims to focus on the design of a decentralized observation and control method for a class of large-scale systems characterized by nonlinear interconnected functions that are assumed to be uncertain but quadratically bounded. Design/methodology/approach Sufficient conditions, under which the designed control scheme can achieve the asymptotic stabilization of the augmented system, are developed within the Lyapunov theory in the framework of linear matrix inequalities (LMIs). Findings The derived LMIs are formulated under the form of an optimization problem whose resolution allows the concurrent computation of the decentralized control and observation gains and the maximization of the nonlinearity coverage tolerated by the system without becoming unstable. The reliable performances of the designed control scheme, compared to a distinguished decentralized guaranteed cost control strategy issued from the literature, are demonstrated by numerical simulations on an extensive application of a three-generator infinite bus power system. Originality/value The developed optimization problem subject to LMI constraints is efficiently solved by a one-step procedure to analyze the asymptotic stability and to synthesize all the control and observation parameters. Therefore, such a procedure enables to cope with the conservatism and suboptimal solutions procreated by optimization problems based on iterative algorithms with multi-step procedures usually used in the problem of dynamic output feedback decentralized control of nonlinear interconnected systems.


2021 ◽  
Author(s):  
Alexander J. Gallo ◽  
Francesca Boem ◽  
Thomas Parisini

Sign in / Sign up

Export Citation Format

Share Document